后端FastAPI—将 API 端点返回的数据封装在一个函数中

上文我们介绍了简单的FastAPI示例程序,通过发送API请求可以获得一个响应

文章在这里:后端FastAPI—分析示例程序-CSDN博客

之前的API响应是直接返回字典形式的数据,但是当后端处理逻辑比较复杂是,这种方式就不太适用了,最好是用函数调用的方式返回数据,具体怎么做呢?有以下几种形式:

方法一:简单的函数封装

你可以创建一个返回字典的普通 Python 函数,然后在你的 FastAPI 路由中使用这个函数。

from fastapi import FastAPI

app = FastAPI()

def create_wxr_ai_response():
    return {"message": "hello wxrai"}


@app.get("/wxr/ai")
async def say_hello_kao():
    return create_wxr_ai_response()

在这个例子中,create_wxr_ai_response() 函数负责创建返回的字典。你的 /wxr/ai 路由现在直接调用这个函数并返回其结果。

如何测试: 和之前一样,启动你的 FastAPI 应用并访问 http://127.0.0.1:8000/wxr/ai,你应该会看到 {"message": "hello wxrai"}

方法二:返回 Pydantic 模型 (推荐)

对于更复杂的数据结构和更好的类型校验,推荐使用 Pydantic 模型来定义你的 API 响应。

首先,你需要安装 pydantic

pip install pydantic

然后,你可以创建一个 Pydantic 模型来表示你的响应:

from fastapi import FastAPI
from pydantic import BaseModel

class WxrAiResponse(BaseModel):
    message: str

app = FastAPI()

def get_wxr_ai_response() -> WxrAiResponse:
    return WxrAiResponse(message="hello wxrai")


@app.get("/wxr/ai", response_model=WxrAiResponse)
async def say_hello_kao():
    return get_wxr_ai_response()

在这个例子中:

  • WxrAiResponse 是一个 Pydantic 模型,它定义了响应的结构,包含一个名为 message 的字符串字段。
  • get_wxr_ai_response() 函数创建并返回一个 WxrAiResponse 实例。
  • @app.get("/wxr/ai", response_model=WxrAiResponse) 中,response_model=WxrAiResponse 告诉 FastAPI 这个端点应该返回符合 WxrAiResponse 模型的数据。FastAPI 会自动进行响应的序列化和文档生成。
  • 注意:

    WxrAiResponse 是一种 类型提示 (Type Hint),用于指示函数 get_wxr_ai_response() 预期返回的值的类型。让我们分解一下:def get_wxr_ai_response():: 这部分定义了一个名为 get_wxr_ai_response 的函数,它不接受任何参数;-> WxrAiResponse: 这部分是类型提示。它告诉开发者和类型检查器(例如 MyPy)这个函数应该返回一个 WxrAiResponse 类型的对象。

方法三:使用类方法 (如果你的逻辑更复杂)

如果你的响应生成逻辑比较复杂,并且可能涉及到一些内部状态或方法,你可以考虑使用一个类来封装。

from fastapi import FastAPI

app = FastAPI()

class WxrAiResponder:
    def __init__(self, greeting="hello"):
        self.greeting = greeting

    def generate_response(self, name="wxrai"):
        return {"message": f"{self.greeting} {name}"}

responder = WxrAiResponder()


@app.get("/wxr/ai")
async def say_hello_kao():
    return responder.generate_response()

@app.get("/wxr/greet/{name}")
async def say_personalized_kao(name: str):
    return responder.generate_response(name=name)

理解 WxrAiResponder 类:

  1. class WxrAiResponder:: 我们定义了一个名为 WxrAiResponder 的类。这个类的作用是封装生成特定格式的 AI 响应的逻辑。

  2. def __init__(self, greeting="hello"):: 这是类的构造函数。

    • 当创建一个 WxrAiResponder 的实例时(例如 responder = WxrAiResponder()),这个方法会被自动调用。
    • 它接收一个可选的参数 greeting,默认值是 "hello"
    • self.greeting = greeting 将传入的 greeting 值存储到对象的内部状态中,通过 self.greeting 可以在这个类的其他方法中访问。
  3. def generate_response(self, name="wxrai"):: 这是类的一个方法,用于生成实际的响应数据。

    • 它接收一个可选的参数 name,默认值是 "wxrai"
    • return {"message": f"{self.greeting} {name}"} 使用 f-string 格式化一个字典,字典中包含一个键为 "message",值为 self.greeting 的值和传入的 name 值组合而成的字符串。

理解 responder 实例:

  1. responder = WxrAiResponder(): 在这里,我们创建了 WxrAiResponder 类的一个实例,并将其赋值给变量 responder
  2. 由于在创建实例时没有传递 greeting 参数,所以 responder 对象的 self.greeting 内部状态将被设置为默认值 "hello"

理解 /wxr/ai 路由:

  1. @app.get("/wxr/ai"): 这是一个处理 HTTP GET 请求到 /wxr/ai 路径的路由。
  2. async def say_hello_kao():: 这是处理该路由的异步函数。
  3. return responder.generate_response(): 在这个函数中,我们调用了 responder 实例的 generate_response() 方法。
    • 由于在调用 generate_response() 时没有传递 name 参数,它将使用默认值 "wxrai"
    • 因此,responder.generate_response() 将返回 {"message": "hello wxrai"}
    • FastAPI 会将这个返回的字典自动转换为 JSON 响应发送给客户端。

理解 /wxr/greet/{name} 路由:

  1. @app.get("/wxr/greet/{name}"): 这是一个处理 HTTP GET 请求到 /wxr/greet/{name} 路径的路由,其中 {name} 是一个路径参数。
  2. async def say_personalized_kao(name: str):: 这是处理该路由的异步函数。它接收一个名为 name 的字符串参数,这个参数的值会从 URL 的路径中提取出来。
  3. return responder.generate_response(name=name): 在这里,我们再次调用了 responder 实例的 generate_response() 方法,但是这次我们将从路径参数中获取的 name 值传递给了 generate_response() 方法的 name 参数。
    • 例如,如果请求的 URL 是 http://127.0.0.1:8000/wxr/greet/Alice,那么 say_personalized_kao 函数中的 name 变量的值将是 "Alice"
    • 因此,responder.generate_response(name="Alice") 将返回 {"message": "hello Alice"} (因为 self.greeting 仍然是 "hello",而 name 被设置为 "Alice")。
    • FastAPI 会将这个返回的字典转换为 JSON 响应发送给客户端。

好了 今天的内容就到这里了,下一步 我们来试着构建更复杂的API响应

OFDM(正交频分复用)是一种高效的多载波通信技术,它将高速数据流拆分为多个低速子流,并通过多个并行的低带宽子载波传输。这种技术具有高频谱效率、强抗多径衰落能力和灵活的带宽分配优势。 OFDM系统利用大量正交子载波传输数据,子载波间的正交性可有效避免码间干扰(ISI)。其数学表达为多个离散子载波信号的线性组合,调制和解调过程通过FFT(快速傅立叶变换)和IFFT(逆快速傅立叶变换)实现。其关键流程包括:数据符号映射到子载波、IFFT转换为时域信号、添加循环前缀以减少ISI、信道传输、接收端FFT恢复子载波数据和解调原始数据。 Matlab是一种广泛应用于科研、工程和数据分析的高级编程语言和交互式环境。在OFDM系统设计中,首先需掌握Matlab基础,包括编程语法、函数库和工具箱。接着,根据OFDM原理构建系统模型,实现IFFT/FFT变换、循环前缀处理和信道建模等关键算法,并通过改变参数(如信噪比、调制方式)评估系统性能。最后,利用Matlab的绘图功能展示仿真结果,如误码率(BER)曲线等。 无线通信中主要考虑加性高斯白噪声(AWGN),其在频带上均匀分布且统计独立。通过仿真OFDM系统,可在不同信噪比下测量并绘制BER曲线。分析重点包括:不同调制方式(如BPSK、QPSK)对BER的影响、循环前缀长度选择对性能的影响以及信道估计误差对BER的影响。 OFDM技术广泛应用于多个领域,如数字音频广播(DAB)、地面数字电视广播(DVB-T)、无线局域网(WLAN)以及4G/LTE和5G移动通信,是这些通信标准中的核心技术之一。 深入研究基于Matlab的OFDM系统设计与仿真,有助于加深对OFDM技术的理解,并提升解决实际通信问题的能力。仿真得到的关键性能指标(如BER曲线)对评估系统可靠性至关重要。未来可进一步探索复杂信道条件下的OFDM性能及系统优化,以适应不同应用场景
51单片机是电子工程领域常用的入门级微控制器,广泛应用于小型电子设备,例如电子时钟。本项目将介绍如何利用51单片机设计一款简单的电子时钟,并通过Keil软件进行程序开发,同时借助Proteus仿真工具进行电路模拟,帮助初学者掌握51单片机的基础应用。 51单片机基于Intel 8051内核,集成了CPU、RAM、ROM、定时器/计数器和I/O端口等功能模块,具有易于编程和性价比高的优势。在电子时钟项目中,主要利用其定时器实现时间的精确计算。Keil μVision是51单片机的常用开发环境,支持C语言和汇编语言编程。开发时,需编写代码以控制单片机显示和更新时间,包括初始化时钟硬件、设置定时器中断、编写中断服务程序以及与LCD显示屏交互等步骤。关键环节如下:一是初始化,配置时钟源(如外部晶振)设定工作频率;二是定时器设置,选择合适模式(如模式1或模式2),设置计数初值以获得所需时间分辨率;三是中断服务,编写定时器中断服务程序,定时器溢出时更新时间并触发中断;四是显示控制,通过I/O端口驱动LCD显示屏显示当前时间。 Proteus是一款虚拟原型设计软件,可用于模拟硬件电路,帮助开发者在编程前验证电路设计。在Proteus中,可搭建51单片机、LCD模块、晶振及电阻、电容等元件,形成电子时钟电路模型。运行仿真后,可观察程序在实际电路中的运行情况,及时发现并解决问题。 实际项目中,51单片机电子时钟还涉及以下知识点:一是时钟信号产生,定时器通过计数外部时钟脉冲实现时间累计,可通过调整晶振频率和定时器初始值设置不同时间间隔;二是LCD接口,需理解LCD的命令和数据传输协议,以及如何控制背光、显示模式、行列地址等;三是中断系统,了解中断概念、中断向量及程序中中断的启用和禁用方法;四是数码管显示,若使用数码管而非LCD,需了解其显示原理及段选、位选的驱动方式。 本项目融合了单片机基础、
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值