JMeter 中通过 WebSocket (WS) 协议发送和接收 Protocol Buffers (Proto) 消息

在 JMeter 中通过 WebSocket (WS) 协议发送和接收 Protocol Buffers (Proto) 消息,需要使用 JMeter WebSocket 插件,并结合 JSR223 脚本处理 Proto 的序列化和反序列化。以下是完整步骤:


1. 准备工作

1.1 安装 WebSocket 插件
  • 下载插件:
    JMeter WebSocket Samplers(推荐使用 WebSocket Samplers by Maciej Zaleski

  • 将插件的 JAR 文件放入 JMeter 的 lib/ext 目录,重启 JMeter。

1.2 添加 Protocol Buffers 依赖
  • 将 protobuf-java-x.x.x.jar 放入 JMeter 的 lib 目录(与之前步骤一致)。

1.3 生成 Proto Java 类
  • 使用 protoc 生成 Java 类(与之前步骤一致)。


2. 发送 Proto 消息(WebSocket)

2.1 配置 WebSocket 连接
  1. WebSocket Open Connection

    • 配置 WebSocket 服务器地址(如 ws://your-server:port/endpoint)。

    • 设置连接超时和消息超时。

  2. WebSocket Request-Response Sampler

    • 用于发送消息并等待响应(同步模式)。

2.2 使用 JSR223 脚本发送 Proto 消息

在 WebSocket Request-Response Sampler 中,使用 JSR223 PreProcessor 生成 Proto 二进制数据:

import com.your.package.RequestProtoMessage;

// 1. 构建 Proto 对象
def request = RequestProtoMessage.newBuilder()
    .setField1("value1")
    .setField2(123)
    .build();

// 2. 序列化为字节数组
byte[] payload = request.toByteArray();

// 3. 将字节数组设置为 WebSocket 请求内容
vars.putObject("wsRequestPayload", payload);
 

在 WebSocket Request-Response Sampler 中配置

  • Request Data${__byteToString(${vars.getObject("wsRequestPayload")}, "ISO-8859-1")}
    (将二进制转换为字符串,确保不丢失数据)

  • Message TypeBinary(必须选择二进制消息类型).


3. 接收 Proto 消息(WebSocket)

3.1 使用 JSR223 PostProcessor 解析响应

在 WebSocket Request-Response Sampler 后添加 JSR223 PostProcessor

import com.your.package.ResponseProtoMessage;

// 1. 获取 WebSocket 响应(二进制格式)
byte[] responseBytes = prev.getResponseData() as byte[];

if (responseBytes == null || responseBytes.length == 0) {
    throw new Exception("WebSocket 响应为空!");
}

try {
    // 2. 反序列化 Proto 对象
    ResponseProtoMessage response = ResponseProtoMessage.parseFrom(responseBytes);

    // 3. 提取字段到 JMeter 变量
    vars.put("responseStatus", response.getStatus().toString());
    vars.put("responseData", response.getData().toString());

    // 4. 断言示例
    if (response.getStatus() != 200) {
        AssertionResult.setFailure(true);
        AssertionResult.setFailureMessage("状态码非 200");
    }

} catch (Exception e) {
    log.error("解析 Proto 响应失败: " + e.getMessage());
    throw e;
}
 

4. 完整测试计划示例

  1. 线程组
    └─ WebSocket Open Connection(建立连接)
    └─ WebSocket Request-Response Sampler
    ├─ JSR223 PreProcessor(生成 Proto 请求)
    └─ JSR223 PostProcessor(解析 Proto 响应)
    └─ WebSocket Close Connection(关闭连接)


5. 关键注意事项

5.1 WebSocket 消息类型
  • 必须选择 Binary 消息类型(Proto 消息为二进制格式)。

  • 文本消息类型可能导致数据损坏。

5.2 异步消息处理
  • 如果服务端主动推送消息(非请求-响应模式),使用 WebSocket Single Read Sampler 监听消息。

  • 示例配置:

    // WebSocket Single Read Sampler 的 JSR223 PostProcessor
    byte[] asyncResponse = prev.getResponseData() as byte[];
    if (asyncResponse != null) {
        ResponseProtoMessage asyncMsg = ResponseProtoMessage.parseFrom(asyncResponse);
        log.info("收到异步消息: " + asyncMsg.toString());
    }
     
5.3 性能优化
  • 复用 WebSocket 连接(避免重复握手)。

  • 在 WebSocket Open Connection 中勾选 Re-use connection

  • 使用 Groovy 语言并启用脚本缓存。


6. 调试技巧

6.1 日志记录

// 记录 Proto 请求内容(Base64 编码方便查看)
import java.util.Base64;
String requestBase64 = Base64.getEncoder().encodeToString(payload);
log.info("Proto 请求内容 (Base64): " + requestBase64);
 
6.2 保存二进制响应到文件

new FileOutputStream("/tmp/websocket_response.bin").write(responseBytes);
 
6.3 模拟二进制消息
  • 使用 __FileToString 函数加载本地 Proto 文件:

    byte[] filePayload = FileInputStream.readAllBytes(new File("/path/to/request.bin"));
    vars.putObject("wsRequestPayload", filePayload);
     

7. 常见错误

  1. ClassNotFoundException: com.your.package.XXXProto

    • 检查 Proto 生成的 Java 类是否在 classpath 中(JAR 文件位置正确)。

  2. WebSocket 连接失败

    • 确认服务器地址和端口是否支持 WebSocket。

    • 检查防火墙或代理设置。

  3. 消息解析失败

    • 确认客户端和服务端的 .proto 文件版本一致。

    • 检查消息类型是否为 Binary


通过以上步骤,可以在 JMeter 中实现基于 WebSocket 的 Protocol Buffers 消息测试。

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

九班长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值