1.递归是什么
在C语言中,递归就是函数自己调用自己。
我们来看一个最简单的递归:
#include <stdio.h>
int main()
{
printf("hehe\n");
main();//main函数中⼜调⽤了main函数
return 0;
}
这就是一个简单的递归程序,只不过上面的递归最后会陷入死递归,只是为了让大家先认识一下递归。
递归的思想:
把一个大型复杂问题层层转化为一个与原问题相似,但是规模较小的子问题来求解;直到子问题不能再被拆分,递归就结束了。所以递归的思考方式就是把大事化小的过程。
递归中的递就是递推的意思,归就是回归的意思。
2.递归的限制条件
递归在书写的时候,有两个必要条件:
1.递归存在限制条件,当满足这个限制条件的时候,递归便不再继续。
2.每次递归调用之后越来越接近这个限制条件。
3.递归举例
3.1举例1:求n的阶乘
我们先从具体的数字开始:
举例:
5!= 5*4*3*2*1
4!= 4*3*2*1
所以5!= 5*4!
我们可以类比得到:
n!= n*(n-1)!
(n-1)!=(n-1)*(n-2)!
(n-2)!=(n-2)*(n-3)!
......
直到n等于1或者0时,就不再分解
再稍微分析一下,当n<=1的时候,n的阶乘是1,其余n的阶乘都是可以通过上述关系推导。
所以n的阶乘的递归公式如下:
我们假设函数Fact(n)就是求n的阶乘,函数如下:
int Fact(int n)
{
if (n <= 1)
return 1;
else
return n * Fact(n - 1);
}
完整代码测试:
#include <stdio.h>
int Fact(int n)
{
if (n <= 1)
return 1;
else
return n * Fact(n - 1);
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fact(n);
printf("%d", ret);
return 0;
}
这里不考虑n太大的情况,n太大存在溢出。
3.2举例2:顺序打印一个整数的每一位
输入一个整数n,按照顺序打印这个整数的每一位。
比如:输入:1234 输出:1 2 3 4
我们先分析一下这个问题:
如果n是一位数,就直接打印n;如果n超过一位数,我们就要拆分每一位。以1234为例,1234%10就得到4,然后1234/10就得到123,然后123%10就得到3,再除10得到12,以此类推,不断地%10和/10操作,直到1234的每一位都被拿出来,但是有个问题就是得到的数字顺序是倒着的。
但是我们发现一个数字的最低位是最容易得到的,那我们假设想写一个函数Print来打印n的每一位,如下表示:
Print(n)
如果n是1234,那表⽰为
Print(1234) //打印1234的每⼀位
其中1234中的4可以通过%10得到,那么
Print(1234)就可以拆分为两步:
1. Print(1234/10) //打印123的每⼀位
2. printf(1234%10) //打印4
完成上述2步,那就完成了1234每⼀位的打印
那么Print(123)⼜可以拆分为Print(123/10)+printf(123%10)
完整代码实现:
#include <stdio.h>
void Print(int n)
{
if (n <= 9)
printf("%d ", n);
else
{
Print(n / 10);
printf("%d ", n % 10);
}
}
int main()
{
int n = 0;
scanf("%d", &n);
Print(n);
return 0;
}
运行结果:
4.递归与迭代
递归是复杂问题很好的一个解决方法,但是也可能被误用,就像举例1中,看到推导的公式,很容易写成递归的形式:
int Fact(int n)
{
if (n <= 1)
return 1;
else
return n * Fact(n - 1);
}
int Fact(int n)
{
int i = 0;
int ret = 1;
for(i=1; i<=n; i++)
{
ret *= i;
}
return ret;
}
上述代码能完成任务而且效率比递归更高。
4.1求第n个斐波那契数
首先我们考虑递归的方式
看到这个公式,很容易诱导我们写成递归的形式,如下:
#include <stdio.h>
int Fib(int n)
{
if (n <= 2)
return 1;
else
return Fib(n - 1) + Fib(n - 2);
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fib(n);
printf("%d", ret);
return 0;
}
当我们输入50的时候,会发现需要很长时间才能算出结果,这说明递归的写法是非常低效的,那是为什么呢?
其实递归程序会不断地展开,在展开的过程中,我们很容易就能发现,递归的过程中会有重复的计算,而且递归层次越深,重复的计算就会越多,我们来测试一下:
#include <stdio.h>
int count = 0;
int Fib(int n)
{
if (n == 3)
count++;//统计第三个斐波那契数被计算的次数
if (n <= 2)
return 1;
else
return Fib(n - 1) + Fib(n - 2);
}
int main()
{
int n = 0;
scanf("%d", &n);
int ret = Fib(n);
printf("%d", ret);
printf("\n");
printf("count=%d",count);
return 0;
}
int Fib(int n)
{
int a = 1;
int b = 1;
int c = 1;
while(n>2)
{
c = a+b;
a = b;
b = c;
n--;
}
return c;
}
用这个方式,效率就会高很多。