7.2.2 MobileNetV3

MobileNetV3 加入了 SE 模块,即注意力机制;其次是更新了激活函数。

这里的注意力机制想法非常简单,即针对每一个 channel 进行池化处理,就得到了 channel 个数个元素,通过两个全连接层,得到输出的这个向量。值得注意的是,第一个全连接层的节点个数等于 channel 个数的 1/4,然后第二个全连接层的节点就和 channel 保持一致。这个得到的输出就相当于对原始的特征矩阵的每个 channel 分析出来了其重要程度,越重要的赋予越大的权重,越不重要的就赋予越小的权重。我们用下图来进行理解,首先采用平均池化将每一个 channel 变为一个值,然后经过两个全连接层之后得到通道权重的输出,值得注意的是第二个全连接层使用 Hard-Sigmoid 激活函数。然后将通道的权重乘回原来的特征矩阵就得到了新的特征矩阵。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值