当你正瘫在宿舍刷着短视频的时候,突然收到导师发来的消息:
‘明天上午十点汇报初稿进度~’
此刻,你回头看见那尚未写完的word文档,想起了被论文支配的恐惧,仿佛失去了所有力气和手段。(难道真的要我一晚上手搓两万字??不要啊!)这种时候,多么希望有一款神器可以救你于水火之中!
各种工具看得你眼花缭乱,选出哪个更好用,突然变得比写论文还要棘手,通过搜索了解到,现今较为热门的三款AI论文软件分别是——DeepSeek、kimi以及笔灵AI进阶版。为了解决这个问题,今天就这三款工具进行一个深度测评,看看哪个才是更适合大学生体质的AI论文工具。
先把我测评的表格贴在前面:
✅传送门:
DeepSeek:https://chat.deepseek.com/
Kimi:https://kimi.moonshot.cn/
复制到客户端浏览器使用感更佳!
一、选题(DeepSeek vs kimi)
在选题方面DeepSeek和kimi可以根据我们的提问,实时给出选题内容。(笔灵AI则更注重文本生成方面,所以在选题部分只作DeepSeek和kimi的对比)
选题指令
拿DeepSeek来说,当我输入有关“人工智能辅助的插画创作流程优化研究”方向的选题指令时,它即刻就为我生成了十个极具学术价值的选题方案。它和传统检索是不一样的,DeepSeek能够迅速对最新的研究前沿加以整合,同时还会给出详尽的研究价值分析内容。
与之相较而言,Kimi可不单单能给出选题方面的建议,它还能够依据已有的文献,智能地提取研究热点和创新角度。(kimi可以附件同步进行分析)
二、大纲 (笔灵AI进阶版win)
大纲的构建在选题与正文写作之间起着极为关键的连接作用。
DeepSeek所生成的大纲向来以逻辑严谨著称,在理工科论文方面更合适,它能够十分精准地描绘出研究框架的大致轮廓。
而Kimi能够根据对话动态调整大纲结构,这一特点使其尤其契合那些需要开展复杂逻辑推理的论文创作需求。
至于笔灵AI进阶版,它呈现出了颇为显著的优势,凭借其全自动生成以及可自定义修改章节的功能,为大学生提供了最便捷的写作方案,并且内容更具学术性,逻辑更严谨。
大纲指令
当我把大纲指令分别输入给DeepSeek和kimi,他们都反馈给我了相应的大纲,可以看出DeepSeek和kimi的大纲对比起来,DeepSeek的大纲逻辑更强一些,kimi的更像是在说一些空话,没有深入地写与题目相关的内容,这种大纲对于应付一时的任务可能有用,但是当你真的用在论文里,肯定是远远不够的。
相比之下,笔灵AI进阶版让我非常惊喜,它操作非常的简单,不需要复杂的生成词,只需要关键的三步——
-
选「论文助手」→专业填好→题目输入我们在DeepSeek或者kimi生成的选题,例如「人工智能辅助的插画创作流程优化研究」
-
点击生成
-
点「编辑大纲」把自己觉得不需要的部分删除,或者根据导师给的修改意见再补充,这样的大纲不仅是原创的,而且可以不断迭代。
但是这么简单的操作步骤总会让我怀疑它生成内容的质量,但是我们看下面的大纲,不仅没有空话套话,还是标准的三级大纲,大纲是真的根据学术研究的框架来写的,逻辑非常严谨,听说是因为笔灵团队在他们的AI模型里加入DeepReseach学术研究型算法模型。(DeepResearch 研究能力:具备多步骤自主研究、端到端强化学习和深度信息整合功能,可处理复杂任务,支持多格式数据输入输出,在学术研究、金融分析等领域有广泛应用)
还能根据你的需求自由添加删减章节和五种类型的图表,例如,想删减第一章第三小节,修改第二章第二小节这些都可以做到。
三、正文
进入正文写作阶段,AI工具的差异性更加明显。
正文指令
DeepSeek在专业术语的准确性和代码类论文的写作上表现卓越,特别适合理工科研究者,但是在语言表述风格上,AI感较强。
Kimi的长文本处理能力,在人文社科类论文中上下文衔接的功能上更胜一筹,但对于一些数据处理和专业名词上是欠缺的。
这样生成下来的文章内容,需要不停的用提示词去和AI沟通,有的时候很容易出现,生成上文忘记下文的情况。
而笔灵AI进阶版,更像一个万金油的选手,既能兼顾里面的学术性内容,也更加省心简单,保证你上下文的连贯程度。
生成的内容是直接以完整word文档的呈现,比起DeepSeek他们那种小标题加短句的格式,也更加标准。
之前添加的图表现在也生成在了对应的位置,并且正文内容有详实的案例,写过论文的同学都知道,论文没有案例的时候,看起来就像空话和套话。
四、懒人速通公式
-
理工科:DeepSeek 40% + 笔灵 60%
-
文科/社科:Kimi 30% + 笔灵 70%
-
综合类:笔灵 90% + DeepSeek 10%
在实际应用中,我建议根据不同学科和研究特点,灵活搭配这些AI工具。
最后,我想说的是,AI并不会取代学术研究者,而是为我们提供了前所未有的创作可能。那些80%的机械性劳动可以交给AI,而剩下的20%——需要深度思考、创新的部分,永远属于人类。在这个智能时代,我们不应恐惧技术,而是要学会驾驭它,让它成为我们学术创作的得力助手。