【新人必读】网文大纲一定要写吗?怎么写?(附模板)

很多新人往往会很疑惑,大纲到底是什么?写小说一定要写大纲吗?怎么写大纲?有没有可套用的模板?

今天这篇文章就致力于解决以上问题。

一、了解大纲 

很多新人朋友在入行的时候对大纲这个词想必已经听过多次,这里还是用简短的篇幅把大纲的要义解释一下。

小说的大纲,指的是整个小说的纲要,是一部小说写作时前期的故事构造和整体的把握。

小说的大纲一般分为粗纲和细纲,如果要做个比喻,粗纲就是一棵大树的主干部分,细纲则是主干下发散的细干,要长成参天大树,得先有枝干,枝干上再长出茂密的树叶,这个树叶就是我们在做好大纲后要去填充的正文的情节细节。

举个栗子,粗纲就是一句话描述

莫北黑了罗凯泽的账号,匿名威胁他离开俞秀筠。

细纲则要把如何得这个过程的情节做大致描述,这里分享一位大神在小密圈讲过的一个章节细纲。

渴望:保护老师俞秀筠

障碍:身份差距,内向性格,年龄差距

冲突:莫北VS罗凯泽

暗中:莫北通过网络进行

明面:莫北干扰罗凯泽的行动

行动:莫北黑了罗凯泽的账号,然后匿名威胁他离开俞秀筠,失败之后,发送匿名信给俞秀筠,曝光其所作所为。

情感:正义感,喜欢御姐

展示:主角的身份、高超技术、喜欢御姐

爽点:黑了英语老师追求者男朋友的社交账户,发现这个人是个人渣,生活不检点,一脚踏几条船,并且还多次让人打胎,专门骗那些感情白痴的美女

还有的说法是,大纲有分为给自己看和给编辑看的,其实,大纲主要就是给自己看的,投稿的时候编辑不怎么看大纲,就看你的开篇三万字,大纲就是意思一下。

所以,大纲就是服务于自己的。到底要不要写呢?我们接下来谈谈这个问题。

二、大纲一定非写不可吗

要不要写大纲,细化到哪种程度,其实应该是要因人而异的。

对于一个新人来说,萌生出创作的想法,往往脑海里只有一个模糊的故事,甚至只有一个创意,连故事的梗概都没有头绪,这种情况下,要去写一个完整的大纲,显然十分困难。

毕竟要写大纲,就必须要将整个故事都想得差不多了,相关设定做得差不多了,而这个过程无疑要花费大量时间精力。随着时间的推移,最坏的结果因为卡在大纲上磨灭了当初的创作热情,或者真正投入创作的行动一再被搁置,从而耽误不少时间。

要写好一部大纲,需要一定积累,没写过几部小说,很难一步到位。

既然不能一步到位,那我们就不需要在大纲上过多纠结。如果你是一个即兴创作者,显然太细化的大纲就不适合你。即兴创作者往往真正码字的时候才会灵感迸发,创造出精彩的情节甚至人物。

我们不能否认这种即兴创作者的存在,他们刚开始的时候,可能仅仅只有一个创意,以及一个主角,然后故事便从这个主角开始,仿佛自己进入了未知的世界,随着创作的进行,主角的冒险历程也逐渐深入。

慢慢的,主角遇到越来越多的人,经历越来越多的事。而这些东西,这些即兴作者可能根本没办法提前构思出来。对于这部分人来说,大纲或者细纲并非一定非写不可,而是应遵循自己的创作习惯。

说完了即兴创作者,对于非即兴创作者来说,大纲还是有着十分的必要的。

就像我们写这篇大纲的方法论文章,也是做了提前构思,要写几部分,每一部分大概写什么都是要提前规划好,不然就是一盘散沙,抓不住重点。

更何况是长篇小说,如果不先拟个大纲,把握好整个故事,就会越写越散,越写越乱。你说你要写一个废柴逆袭的故事,而至于在哪种环境下逆袭,要设置哪些人物,哪些人物是帮助主角的,哪些人物是阻碍主角的,主角要经历哪些成长等都没有想清楚的话,是不是没有办法下笔?

当然你也可以边想边写,但边想边写存在诸多弊端,难以掌握全局,文章生硬,容易卡文等。

由此得知,写大纲无疑还是好处多多,能让创作过程相对更加得心应手,作品本身也更加具有条理。

三、怎样写大纲

前面说大纲包括粗纲和细纲,而粗纲往往就是一句话描述,就没必要说了,主要谈细纲怎么写。

完整的细纲包括哪些内容呢?

1.题材

明确自己要写的是一本什么题材的书,以免到后面写偏。大家经常能看到有些书,前面是都市,某个渠道成绩比较好之后,无限延长,最后故事没得写了,就变成了玄幻继续水……

2.小说特色、卖点

能说出自己小说的卖点在哪里,凭什么让读者付费,吸引读者阅读的点在哪里,有什么特色?是新奇的世界观设定?是主角逆袭走向人生巅峰的爽感?还是角色间爱恨情仇等,这都是需要提前考虑清楚的。

3.定位、读者群

明确自己的作品主要是写给哪一类读者看的,考虑怎么写会更好地迎合目标读者群。

4.相关设定

包括环境设定、等级设定、人物设定、金手指。

环境设定:故事发生的环境背景,这是任何一类小说都需要设定的,就算只是个简单的校园言情,也要设定好校园环境。

等级设定:这也是任何一类小说都要有的,只不过每一类小说的等级是不一样的。主角要成长,必然是要有一个等级的上升。

玄幻如斗破里面斗之气的分段

一至九段斗之气,斗者,斗师,大斗师,斗灵,斗王,斗皇,斗宗,斗尊,斗圣,斗帝

武侠如《龙蛇演义》里的内家拳修炼等级

明劲,暗劲,化劲,丹劲,罡劲,打破虚空。

相对而言,都市小说等级不那么明显,但一定是有的,比如金钱地位都属于等级。

人物设定:作品中经常会出现的人物都要设定好。主角、配角、主角与配角的关系,主角配角的性格特征,身世背景。各角色之间的纠葛根据角色关系走,人物的行动根据性格走,才不至于跑偏。

金手指:先天或者后天赋予。

5.故事主线

故事的主线换句话说就是故事的一个简述,一个标准的长篇网络小说主线应包括开局→矛盾发展→转折→高潮→结束→新地图的开局→矛盾...(如果要换地图的话)

6.分卷大纲

这个部分因人而异,如果要写的话,可以设置字数、一卷里主角在哪里跟什么人物发生了什么,成长到哪个地步,用一两百字概述即可。

之所以说是因人而异,是因为有些人往往是写到某个情节的时候才知道下一步应该发生什么,如果是这样的话就没办法做分卷大纲,而有些人是必须把每一步都设置好才知道怎么写。

(另附一个比较详细的大纲模版可供参考: 

书名:《XXX》

第一、体材:玄幻,武侠,科幻,幻想,军事,YY

第二、主题:主要情节内容,说明什么?内涵

第三、内容简介:

第四、预计字数:XX万

第五:环境设定

环境地理:哪个世界环境,如是异时空需要说明,什么地名,越后面越远,供人物移动使用。

中央:

东面:

西面:

南面:

北面:

第六、角色设定(正面角色、反面角色、中间角色和闲杂职业)

1.姓名:性别,年龄,性格,语言风格,初始技能,后学习技能。

N.姓名:性别,年龄,性格,语言风格,初始技能,后学习技能。

第七、技能设定:

1.技能名称:学习过程,使用动作,效果,优点描述,缺点描述。

第七、道具设定

1.道具名称:尺寸,外型,重量,主要功能所在位置,特殊效果,制造成。

第八、情节设定(最简洁的一句话介绍整个情节)

环境序引:

世界格局:

势力分布:

第九、情节结构

主角出世:

生活环境:

引发情节:

主角入世:

学习情节名:

受挫情节名:

组队情节名:

敌对情节名:

战斗情节名:

进化情节名:

再学习情节名:

大势力情节名:

书末战斗情节名:

末尾结文情节名:

敌对情节:

介绍情节名:

结仇情节名:

内部对话情节名:

分裂或发展情节名:

盟友情节:

介绍情节名:

结盟情节名:

帮助情节名:

第十、章节情节简述(200-500字说明全节内容)

第一节:

第二节:

第三节:

......

大结局:

更多相关教程:

小说大纲的格式与内容概述

大纲是怎样炼成的

写作大纲的技巧和注意事项

小说分集情节大纲辅助设定 

写作大纲的十大步骤

大纲辅助生成与改写:https://ibiling.cn/xiaoshuo/?from=csdnmanjnovel

<think>嗯,用户问的是Deeplabv3+在PyTorch中的代码实现。首先,我需要回忆一下Deeplabv3+的结构。Deeplabv3+结合了DeepLabv3的ASPP模块和编码器-解码器结构,加入了decoder模块来细化分割结果,特别是边缘部分。所以代码的大致结构应该包括Backbone、ASPP、Decoder这几个部分。 接下来,用户可能希望了解具体的代码结构,可能需要分模块讲解。比如,先讲Backbone,通常用的是ResNet或者Xception。然后ASPP模块,里面有不同膨胀率的卷积和全局平均池化。然后是Decoder部分,融合深层和浅层的特征。 然后,我需要考虑用户的需求层次。可能用户是刚入门,想了解如何用PyTorch实现这个模型,或者是在做项目时需要参考代码结构。所以应该给出代码示例,并且分模块解释,这样他们能更容易理解。 另外,用户可能对数据加载、训练过程也有兴趣,但问题主要是代码介绍,所以可能重点放在模型结构上。不过可以简要提到数据预处理和训练流程,让整体更完整。 还要注意PyTorch的实现细节,比如使用预训练的ResNet作为Backbone,修改最后的几层,替换成ASPP。在ASPP模块中,不同膨胀率的空洞卷积,以及Image Pooling的部分。Decoder部分需要将低层次的特征与经过上采样的ASPP输出进行融合,然后进一步上采样得到最终结果。 需要检查是否有常见的错误,比如上采样时是否正确拼接特征图,ASPP中的卷积是否设置正确的dilation rate。还有,输出层的通道数是否正确,比如分类数目。 可能用户会关心如何训练,比如损失函数用交叉熵,优化器用SGD或者Adam。数据增强方法,如随机缩放、翻转等。这些虽然用户没有明确问,但作为代码介绍的一部分,简要提及会更有帮助。 最后,确保代码示例符合PyTorch的最佳实践,比如使用nn.Module子类化,正确初始化权重等。同时,注意注释和结构清晰,方便用户理解。</think>以下是 Deeplabv3+ 的 PyTorch 实现要点及代码结构解析: ===== 模型结构 ===== Deeplabv3+ = DeepLabv3 (ASPP模块) + 解码器结构 1. Backbone 网络(示例使用 ResNet) ```python class Backbone(nn.Module): def __init__(self, backbone='resnet50'): super().__init__() model = getattr(torchvision.models, backbone)(pretrained=True) # 提取中间层特征 self.layer0 = nn.Sequential(model.conv1, model.bn1, model.relu, model.maxpool) self.layer1 = model.layer1 # stride 4 self.layer2 = model.layer2 # stride 8 self.layer3 = model.layer3 # stride 16 self.layer4 = model.layer4 # stride 32 ``` 2. ASPP 模块(空洞空间金字塔池化) ```python class ASPP(nn.Module): def __init__(self, in_channels, out_channels=256): super().__init__() # 不同膨胀率的卷积 self.conv1x1 = nn.Conv2d(in_channels, out_channels, 1) self.conv3x3_6 = nn.Conv2d(in_channels, out_channels, 3, padding=6, dilation=6) self.conv3x3_12 = nn.Conv2d(in_channels, out_channels, 3, padding=12, dilation=12) self.conv3x3_18 = nn.Conv2d(in_channels, out_channels, 3, padding=18, dilation=18) # 图像池化分支 self.image_pool = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Conv2d(in_channels, out_channels, 1) ) ``` 3. Decoder 模块(特征融合) ```python class Decoder(nn.Module): def __init__(self, num_classes): super().__init__() # 融合低层特征和高层特征 self.conv1 = nn.Conv2d(256, 48, 1) # 调整低层特征通道数 self.conv2 = nn.Conv2d(304, 256, 3, padding=1) self.conv3 = nn.Conv2d(256, num_classes, 1) def forward(self, x_low, x_high): x_high = F.interpolate(x_high, scale_factor=4, mode='bilinear', align_corners=True) x_low = self.conv1(x_low) x = torch.cat([x_low, x_high], dim=1) x = self.conv2(x) x = self.conv3(x) return x ``` ===== 完整模型集成 ===== ```python class DeepLabv3Plus(nn.Module): def __init__(self, backbone='resnet50', num_classes=21): super().__init__() self.backbone = Backbone(backbone) self.aspp = ASPP(in_channels=2048) # ResNet50的layer4输出通道 self.decoder = Decoder(num_classes) def forward(self, x): # Encoder部分 x = self.backbone.layer0(x) # stride 4 x_low = self.backbone.layer1(x) # stride 4 x = self.backbone.layer2(x_low) # stride 8 x = self.backbone.layer3(x) # stride 16 x = self.backbone.layer4(x) # stride 32 # ASPP处理 x = self.aspp(x) # Decoder融合 x = self.decoder(x_low, x) x = F.interpolate(x, scale_factor=4, mode='bilinear', align_corners=True) return x ``` ===== 关键实现细节 ===== 1. 空洞卷积配置: - 在ResNet的layer4部分需要设置dilation参数 - 需修改ResNet的最后两个block的膨胀率 2. 特征融合: - 将backbone的中间层特征(stride4)与ASPP输出融合 - 使用双线性插值进行上采样 3. 训练技巧: ```python # 典型训练参数 optimizer = torch.optim.SGD(model.parameters(), lr=0.007, momentum=0.9, weight_decay=1e-4) criterion = nn.CrossEntropyLoss(ignore_index=255) # 处理mask的忽略值 # 学习率调度 scheduler = torch.optim.lr_scheduler.PolynomialLR(optimizer, power=0.9, total_iters=100) ``` ===== 数据预处理 ===== 典型数据增强流程: ```python transforms.Compose([ transforms.RandomResizedCrop(513), # 随机缩放裁剪 transforms.RandomHorizontalFlip(), # 随机水平翻转 transforms.ColorJitter(), # 颜色抖动 transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], # ImageNet标准化 std=[0.229, 0.224, 0.225]) ]) ``` 完整实现建议参考官方代码库: `torchvision.models.segmentation.deeplabv3`(注意需要添加decoder部分) 该实现支持自定义backbone,可根据任务需求调整通道数和解码器结构。实际部署时需要注意输出stride的设置与输入尺寸的对应关系。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值