训练第九周

P3367

标准的并查集题目

都有模板

怎么说呢就是把一堆元素分类存放的思想,然后优化了一下组织内部的头节点问题

#include<bits/stdc++.h>
using namespace std;
int f[100010];
int find(int x)
{
	if(f[x]==x)return x;
	else return f[x]=find(f[x]);
}
int main()
{
	int n,m;
	cin>>n>>m;
	for(int i=1;i<=n;i++)f[i]=i;
	for(int i=0;i<m;i++)
	{
		int a,b,c;
		cin>>a>>b>>c;
		if(a==1)
		{
			f[find(c)]=find(b);
		}
		else
		{
			if(find(b)==find(c))cout<<"Y"<<endl;
			else cout<<"N"<<endl;
		}
	}
	return 0;
}

p8604

这个题呢,是在求一个图里除开环上的节点其他所有的节点的个数

怎么说呢,用dfs求出路径总数后,在dfs的路途中每经过一次节点,对这个节点++;

然后判断每个节点是否的经过数是否等于路径数,如果是

那么说明这个节点是在链上的节点

其他的都是在环上()

#include<bits/stdc++.h>
using namespace std;
int n,m;
int start,target;
int vis[1002];
int tem_vis[1002];
int sum;
int maps[1002][1002];
void dfs(int x)
{
	if(x==target)
	{
		sum++;
		for(int i=1;i<=n;i++)
			if(tem_vis[i]==1)vis[i]++;
	}
	else
	{
		for(int i=1;i<=n;i++)
		{
			if(maps[x][i]==1&&tem_vis[i]==0)
			{
				tem_vis[i]=1;
				dfs(i);
				tem_vis[i]=0;
			}
		}
	}
}
int main()
{
	cin>>n>>m;
	for(int i=0;i<m;i++)
	{
		int a,b;
		cin>>a>>b;
		maps[a][b]=1;
		maps[b][a]=1;
	}
	cin>>start>>target;
	dfs(start);
	if(sum>0)
	{
		int ans=0;
		for(int i=1;i<=n;i++)
		{
			if(vis[i]==sum)ans++;
		}
		cout<<ans-1;
	}
	else
		cout<<-1;
	return 0;
}

p1330

这题的做法是把这个图分层然后用并查集放在同一个父结点上,如果同一层出现了两个节点是连通的,那么不可能输出impossible然后退出程序,可能的话就直接找父节点相同的点的个数,取这两个数的小值就行了

#include<bits/stdc++.h>
using namespace std;
int n,m;
int vis[10005]={0};
int maps[10005][10005]={0};
int father[10005];
int h[10005];
int t[10005]={0};
int finds(int x)
{
	if(father[x]==x)return x;
	else return father[x]=finds(father[x]);
}
void join(int x,int y)
{
	int tem=finds(x);
	if(tem!=y)
	{
		father[y]=tem;
		t[tem]+=t[y];
	}
}
int main()
{
	cin>>n>>m;
	for(int i=1;i<=n;i++)
	{
		father[i]=i;
		t[i]=1;
	}
	for(int i=0;i<m;i++)
	{
		int a,b;
		cin>>a>>b;
		int x1=finds(a),x2=finds(b);
		if(x1==x2)
		{
			cout<<"Impossible";
			exit(0);
		}
		else
		{
			if(h[a])join(h[a],x2);
			if(h[b])join(h[b],x1);
			h[a]=x2;
			h[b]=x1;
		}
	}
	int ans=0;
	for(int i=1;i<=n;i++)
	{
		int q=finds(i);
		if(!vis[q])
		{
			int tem=finds(h[i]);
			vis[q]=1;
			vis[tem]=1;
			ans+=min(t[q],t[tem]);
		}
	}
	cout<<ans;
	return 0;
}

p3916

嗯很简单,,

反向建邻接表然后直接标记爆搜()

不要问我为什么做了四个小时()

#include<bits/stdc++.h>
using namespace std;
int n,m;
vector<vector<int>> maps;
vector<int> arr;
vector<int> vis;
vector<int> anss;
int ans;
int tem=0;
void dfs(int x)
{
	if(vis[x])
	{
		return;
	}
	anss[x]=tem;
	vis[x]=1;
//	cout<<x<<endl;
	for(int j=0;j<arr[x];j++)
	{
		dfs(maps[x][j]);
	}
}
int main()
{
	cin>>n>>m;
	maps.resize(n+1,vector<int>(1));
	arr.resize(n+1,0);
	vis.resize(n+1,0);
	anss.resize(n+1,-1);
	for(int i=0;i<m;i++)
	{
		int a,b;
		cin>>a>>b;
		if(a==b)continue;

		maps[b][arr[b]]=a;
		arr[b]++;
		maps[b].resize(arr[b]+1);
	}
	for(int i=n;i>=1;i--)
	{
		if(vis[i])continue;
		tem=i;
		dfs(i);
	}
	for(int i=1;i<=n;i++)
	{
		cout<<anss[i]<<" ";
	}
	return 0;
}

p1119

考察Floyd算法的本质??

如果这题是乱序的话就真的是上难度了,想不到

#include<bits/stdc++.h>
using namespace std;
int n,m;
int times[205];
int maps[201][201];
void floyd(int k)
{
	for(int i=0;i<n;i++)
	{
		for(int j=0;j<n;j++)
		{
			maps[i][j]=min(maps[i][k]+maps[k][j],maps[i][j]);
		}
	}
}
int main()
{
	cin>>n>>m;
	for(int i=0;i<n;i++)
	{
		for(int j=0;j<n;j++)
		{
			maps[i][j]=1e9;
		}
	}
	for(int i=0;i<n;i++)
	{
		cin>>times[i];
		maps[i][i]=0;
	}
	int start,final,t;
	for(int i=0;i<m;i++)
	{
		cin>>start>>final>>t;
		maps[start][final]=maps[final][start]=t;
	}
	int q;
	cin>>q;
	int k=0;
	for(int i=0;i<q;i++)
	{
		cin>>start>>final>>t;
		while(times[k]<=t&&k<n)
		{
			floyd(k);
			k++;
		}
		if(times[start]>t||times[final]>t)cout<<-1<<endl;
		else
		{
			if(maps[start][final]==1e9)cout<<-1<<endl;
			else
			{
				cout<<maps[start][final]<<endl;
			}
		}
	}
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值