深度学习第六周:VGG-16和预训练权重——人脸识别

往期内容

深度学习第一周:单通道图像——MNIST手写数字识别
深度学习第二周:多通道图像——CIFAR10彩色图片识别
深度学习第三周:本地数据集——天气识别
深度学习第四周:模型保存和加载——猴痘病识别
深度学习第五周:动态学习率——运动鞋识别

一、 前期准备

1. 设置GPU

import torch
import torch.nn as nn
import matplotlib.pyplot as plt
import torchvision

# 设置硬件设备,如果有GPU则使用,没有则使用cpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

Output:

device(type='cuda')  #代表使用的是GPU

2. 设置随机种子

为了保证实验可以复现,我们通过随机种子控制随机数的生成。

import random
import numpy as np

def setup_seed(seed):
     torch.manual_seed(seed)
     torch.cuda.manual_seed_all(seed)
     np.random.seed(seed)
     random.seed(seed)
     torch.backends.cudnn.deterministic = True
# 设置随机数种子
setup_seed(2)

3. 导入数据

import os,PIL,random,pathlib

data_dir = './data/第六周人脸'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[2] for path in data_paths]
classeNames
['adidas', 'nike']
  • pathlib.Path(data_dir):它将data_dir字符串转换成一个Path对象。这个对象代表了文件系统中的具体路径,无论这个路径是否真实存在。
  • data_dir.glob('*'):生成一个迭代器。这个迭代器遍历与指定模式匹配的所有路径。当前模式是'*',意味着它会匹配data_dir目录下的所有文件和子目录,不论它们的名字是什么。
  • .split("\\"):这个方法用于分割路径字符串,使用反斜杠(\)作为分隔符。在Windows操作系统中,路径通常使用反斜杠作为目录分隔符。注意,由于反斜杠在Python字符串中用作转义字符,因此需要双写(即"\")以表示字面上的反斜杠字符。
  • [2]:代表为path根据反斜杠分割后的第三个元素。
# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
#     transforms.RandomHorizontalFlip(), # 随机水平翻转 将导致模型测试时准确率不定
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从imagenet中随机抽样计算得到的。
])

total_data = datasets.ImageFolder("./data/第六周人脸",transform=train_transforms)
total_data
  • datasets.ImageFoldertorchvision.datasets.ImageFolder是PyTorch提供的一个类,它用于处理那些目录结构按类别组织的图像数据集。每个类的图像应存储在各自的子目录中。ImageFolder自动将这些子目录的名称作为类标签。
  • mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]:mean, std 三通道值是从imagenet训练集中抽样算出来的。
  • 特别注意!!!!!!当transforms.RandomHorizontalFlip()启用时,若训练集和测试集的DataLoader每次输出都将进行随机水平翻转。

查看数据集大小,

train_size=len(train_dataset)
test_size=len(test_dataset)
train_size,test_size
(1440, 360)

通过 torch.utils.data.DataLoader 设置 Loader,

batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size=batch_size,
                                           shuffle=True,
                                           num_workers=4)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size=batch_size,
                                          shuffle=True,
                                          num_workers=4)
  • num_workers=1: 这个参数设置了用于数据加载的子进程数。增加num_workers的数量可以提高数据加载的速度,特别是当数据集比较大或者数据预处理比较耗时时。设置为2意味着会有两个工作进程并行读取数据。这个参数需要根据本地/服务器性能,进行灵活调整,并非越大越好。

查看数据维数,

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break
Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

对应的是:

  • batch number:32
  • channel:3
  • height:224(图片的长)
  • weight:224(图片的宽)

2.构建网络

from torchvision.models import vgg16
import torch.nn as nn
# 加载预训练模型
model = vgg16(pretrained=True).to(device) # 加载预训练的 VGG16 模型
# 修改分类器模块的最后一层
num_classes = 17  # 数据集有17个类别
model.classifier._modules['6'] = nn.Linear(4096, num_classes) # 修改最后一层全连接层,输出目标类别个数 

model.to(device)
VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace=True)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace=True)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace=True)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace=True)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace=True)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace=True)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace=True)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace=True)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace=True)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace=True)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace=True)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace=True)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU(inplace=True)
    (2): Dropout(p=0.5, inplace=False)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU(inplace=True)
    (5): Dropout(p=0.5, inplace=False)
    (6): Linear(in_features=4096, out_features=17, bias=True)
  )
)
  • VGG16 : VGG-16 是一个在ImageNet上预训练的深度学习模型,用于图像识别和分类任务。它包含16层网络,由卷积层、激活层(ReLU)、池化层和全连接层组成。
  • pretrained=True: 表示加载一个已经在ImageNet上训练好的模型。这意味着模型已经学习了从大量图像中提取特征的能力,可以直接用于新的数据集上,进行图像识别或分类任务。
  • model.classifier: 在 VGG-16 模型中,classifier 属性是一个顺序容器(Sequential container),它包含了模型最后的几个全连接层。这些层的作用是将卷积层提取的特征映射到最终的分类类别上。在原始的 VGG-16 模型中,这部分是设计来处理 1000 个类别的 ImageNet 任务的。
  • _modules['6']: _modules 是 PyTorch 中 Sequential 容器的一个内部字典,它保存了容器中所有模块的有序映射。通过键值 ‘6’ 访问,我们定位到 Sequential 容器中的第七个模块,也就是最后一层——分类的全连接层

查看网络参数,

from torchinfo import summary
model = Model().to(device) # 将模型转移到GPU中(我们模型运行均在GPU中进行)
# 加载训练好的参数
# PATH = './Model/P5_model.pth'
# model.load_state_dict(torch.load(PATH, map_location=device))
summary(model)
=================================================================
Layer (type:depth-idx)                   Param #
=================================================================
VGG                                      --
├─Sequential: 1-1                        --
│    └─Conv2d: 2-1                       1,792
│    └─ReLU: 2-2                         --
│    └─Conv2d: 2-3                       36,928
│    └─ReLU: 2-4                         --
│    └─MaxPool2d: 2-5                    --
│    └─Conv2d: 2-6                       73,856
│    └─ReLU: 2-7                         --
│    └─Conv2d: 2-8                       147,584
│    └─ReLU: 2-9                         --
│    └─MaxPool2d: 2-10                   --
│    └─Conv2d: 2-11                      295,168
│    └─ReLU: 2-12                        --
│    └─Conv2d: 2-13                      590,080
│    └─ReLU: 2-14                        --
│    └─Conv2d: 2-15                      590,080
│    └─ReLU: 2-16                        --
│    └─MaxPool2d: 2-17                   --
│    └─Conv2d: 2-18                      1,180,160
│    └─ReLU: 2-19                        --
│    └─Conv2d: 2-20                      2,359,808
│    └─ReLU: 2-21                        --
│    └─Conv2d: 2-22                      2,359,808
│    └─ReLU: 2-23                        --
│    └─MaxPool2d: 2-24                   --
│    └─Conv2d: 2-25                      2,359,808
│    └─ReLU: 2-26                        --
│    └─Conv2d: 2-27                      2,359,808
│    └─ReLU: 2-28                        --
│    └─Conv2d: 2-29                      2,359,808
│    └─ReLU: 2-30                        --
│    └─MaxPool2d: 2-31                   --
├─AdaptiveAvgPool2d: 1-2                 --
├─Sequential: 1-3                        --
│    └─Linear: 2-32                      102,764,544
│    └─ReLU: 2-33                        --
│    └─Dropout: 2-34                     --
│    └─Linear: 2-35                      16,781,312
│    └─ReLU: 2-36                        --
│    └─Dropout: 2-37                     --
│    └─Linear: 2-38                      69,649
=================================================================
Total params: 134,330,193
Trainable params: 134,330,193
Non-trainable params: 0
=================================================================

三、 训练模型

1. 设置超参数——PyTorch调用API

learn_rate = 1e-3 # 初始学习率
lambda1 = lambda epoch: (0.98 ** (epoch // 2))
optimizer  = torch.optim.SGD(model.parameters(), lr=learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1) #选定调整方法
  • lambda1 = lambda epoch: (0.98 ** (epoch // 2)):定义一个匿名函数 lambd1,使用lambda关键字(专门用于创建匿名函数),其参数是 epoch,函数体是返回 0.98 ^ [ epoch 除以 2 的商]。
  • scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda1)LambdaLR调度器名为scheduler,它根据lambda1函数动态调整optimizer关联的学习率LambdaLR接受两个主要参数:optimizer, lr_lambdaoptimizer是之前创建的SGD优化器,lr_lambda是定义好的调整学习率的函数。

2. 训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss
  • optimizer.zero_grad()清空上一次的累计梯度
  • loss.backward()根据tensor进行过的数学运算来自动计算其对应的梯度。具体来说,torch.tensor是autograd包的基础类,如果你设置tensor的requires_gradsTrue,就会开始跟踪这个tensor上面的所有运算,如果你做完运算后使用tensor.backward(),所有的梯度就会自动运算,tensor的梯度将会累加到它的.grad属性里面去。
  • optimizer.step() step()函数的作用是执行一次反向传播,通过梯度下降法来更新参数的值。optimizer只负责通过梯度下降进行优化,而不负责产生梯度

3.测试函数

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器。

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item() #累计loss
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item() # 累计正确个数

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4. 正式训练

import copy

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
epochs     = 45

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

best_acc = 0    # 设置一个最佳准确率,作为最佳模型的判别指标

for epoch in range(epochs):
    # 更新学习率(使用自定义学习率时使用)
    # adjust_learning_rate(optimizer, epoch, learn_rate)
    
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    scheduler.step() # 更新学习率(调用官方动态学习率接口时使用)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    # 保存最佳模型到 best_model
    if epoch_test_acc > best_acc:
        best_acc   = epoch_test_acc
        best_model = copy.deepcopy(model)
        # 保存最佳模型到文件中
        PATH = './Model/P6_model.pth'  # 保存的参数文件名
        torch.save(model.state_dict(), PATH)
        
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    
    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, 
                          epoch_test_acc*100, epoch_test_loss, lr))
    


print('Done')
Epoch: 1, Train_acc:9.0%, Train_loss:2.788, Test_acc:17.8%, Test_loss:2.594, Lr:1.00E-03
Epoch: 2, Train_acc:17.4%, Train_loss:2.543, Test_acc:20.8%, Test_loss:2.365, Lr:9.80E-04
Epoch: 3, Train_acc:21.7%, Train_loss:2.325, Test_acc:26.9%, Test_loss:2.177, Lr:9.80E-04
Epoch: 4, Train_acc:26.4%, Train_loss:2.158, Test_acc:32.2%, Test_loss:2.000, Lr:9.60E-04
Epoch: 5, Train_acc:29.2%, Train_loss:2.018, Test_acc:37.8%, Test_loss:1.830, Lr:9.60E-04
Epoch: 6, Train_acc:35.8%, Train_loss:1.820, Test_acc:40.6%, Test_loss:1.670, Lr:9.41E-04
Epoch: 7, Train_acc:39.0%, Train_loss:1.681, Test_acc:44.7%, Test_loss:1.529, Lr:9.41E-04
Epoch: 8, Train_acc:45.1%, Train_loss:1.513, Test_acc:48.6%, Test_loss:1.453, Lr:9.22E-04
Epoch: 9, Train_acc:49.9%, Train_loss:1.393, Test_acc:53.3%, Test_loss:1.394, Lr:9.22E-04
Epoch:10, Train_acc:52.7%, Train_loss:1.327, Test_acc:56.1%, Test_loss:1.284, Lr:9.04E-04
Epoch:11, Train_acc:58.7%, Train_loss:1.171, Test_acc:57.5%, Test_loss:1.227, Lr:9.04E-04
Epoch:12, Train_acc:61.3%, Train_loss:1.114, Test_acc:61.4%, Test_loss:1.119, Lr:8.86E-04
Epoch:13, Train_acc:64.7%, Train_loss:1.011, Test_acc:61.4%, Test_loss:1.075, Lr:8.86E-04
Epoch:14, Train_acc:67.2%, Train_loss:0.929, Test_acc:61.9%, Test_loss:1.058, Lr:8.68E-04
Epoch:15, Train_acc:71.3%, Train_loss:0.825, Test_acc:64.7%, Test_loss:1.026, Lr:8.68E-04
Epoch:16, Train_acc:71.6%, Train_loss:0.783, Test_acc:68.1%, Test_loss:1.021, Lr:8.51E-04
Epoch:17, Train_acc:73.8%, Train_loss:0.718, Test_acc:64.4%, Test_loss:0.998, Lr:8.51E-04
Epoch:18, Train_acc:77.4%, Train_loss:0.661, Test_acc:68.1%, Test_loss:0.925, Lr:8.34E-04
Epoch:19, Train_acc:79.4%, Train_loss:0.577, Test_acc:68.9%, Test_loss:0.927, Lr:8.34E-04
Epoch:20, Train_acc:81.1%, Train_loss:0.522, Test_acc:69.2%, Test_loss:0.936, Lr:8.17E-04
Epoch:21, Train_acc:83.3%, Train_loss:0.487, Test_acc:67.8%, Test_loss:0.876, Lr:8.17E-04
Epoch:22, Train_acc:85.4%, Train_loss:0.418, Test_acc:71.7%, Test_loss:0.895, Lr:8.01E-04
Epoch:23, Train_acc:87.7%, Train_loss:0.373, Test_acc:71.7%, Test_loss:0.892, Lr:8.01E-04
Epoch:24, Train_acc:87.4%, Train_loss:0.362, Test_acc:72.5%, Test_loss:0.907, Lr:7.85E-04
Epoch:25, Train_acc:88.3%, Train_loss:0.332, Test_acc:73.9%, Test_loss:0.970, Lr:7.85E-04
Epoch:26, Train_acc:89.5%, Train_loss:0.294, Test_acc:72.2%, Test_loss:0.877, Lr:7.69E-04
Epoch:27, Train_acc:91.5%, Train_loss:0.260, Test_acc:72.5%, Test_loss:0.930, Lr:7.69E-04
Epoch:28, Train_acc:90.6%, Train_loss:0.263, Test_acc:72.5%, Test_loss:0.927, Lr:7.54E-04
Epoch:29, Train_acc:91.9%, Train_loss:0.229, Test_acc:73.1%, Test_loss:0.923, Lr:7.54E-04
Epoch:30, Train_acc:93.8%, Train_loss:0.193, Test_acc:74.2%, Test_loss:0.935, Lr:7.39E-04
Epoch:31, Train_acc:94.0%, Train_loss:0.192, Test_acc:73.3%, Test_loss:0.872, Lr:7.39E-04
Epoch:32, Train_acc:93.6%, Train_loss:0.182, Test_acc:74.2%, Test_loss:0.937, Lr:7.24E-04
Epoch:33, Train_acc:94.2%, Train_loss:0.166, Test_acc:73.6%, Test_loss:0.908, Lr:7.24E-04
Epoch:34, Train_acc:95.9%, Train_loss:0.133, Test_acc:73.3%, Test_loss:0.896, Lr:7.09E-04
Epoch:35, Train_acc:96.0%, Train_loss:0.126, Test_acc:75.0%, Test_loss:0.925, Lr:7.09E-04
Epoch:36, Train_acc:96.8%, Train_loss:0.114, Test_acc:74.4%, Test_loss:0.952, Lr:6.95E-04
Epoch:37, Train_acc:96.7%, Train_loss:0.110, Test_acc:73.1%, Test_loss:0.981, Lr:6.95E-04
Epoch:38, Train_acc:96.8%, Train_loss:0.095, Test_acc:73.3%, Test_loss:0.982, Lr:6.81E-04
Epoch:39, Train_acc:96.9%, Train_loss:0.102, Test_acc:75.6%, Test_loss:1.005, Lr:6.81E-04
Epoch:40, Train_acc:97.8%, Train_loss:0.082, Test_acc:75.3%, Test_loss:1.082, Lr:6.68E-04
Epoch:41, Train_acc:97.4%, Train_loss:0.086, Test_acc:73.1%, Test_loss:0.940, Lr:6.68E-04
Epoch:42, Train_acc:97.0%, Train_loss:0.090, Test_acc:75.3%, Test_loss:1.057, Lr:6.54E-04
Epoch:43, Train_acc:97.6%, Train_loss:0.077, Test_acc:75.0%, Test_loss:0.981, Lr:6.54E-04
Epoch:44, Train_acc:97.7%, Train_loss:0.071, Test_acc:74.4%, Test_loss:1.002, Lr:6.41E-04
Epoch:45, Train_acc:98.1%, Train_loss:0.067, Test_acc:74.7%, Test_loss:0.970, Lr:6.41E-04
Done
  • model.train()的作用是启用 Batch Normalization 和 Dropout。
  • model.eval()的作用是关闭 Batch Normalization 和 Dropout。Normalization部分是调用training set中的方差和均值进行。Dropout部分不需要,Dropout部分只是帮助模型训练,防止过拟合。因此我们直接调用模型训练好的参数即可。
  • copy.deepcopy(model):目的是创建一个已存在模型的深拷贝。这里的“深拷贝”意味着完全独立于原始对象的一个复制,包括对象中嵌套的所有子对象。

四、 结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2. 指定图片进行预测

from PIL import Image 

classes = list(train_dataset.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')

这里需要注意的是,nn.CrossEntropyLoss()target并没有经过独热编码,例如[0 ,3, 4, 1],代表有四个样本,分别属于第0、3、4、1类。但是nn.CrossEntropyLoss()output维数 = 类别数,例如 [ 3.4972, -3.2446],代表该样本第1类得分为 3.4972,第2类得分为 -3.2446。由于第1类得分更大,因此该样本将被判定为第1类。

# 预测训练集中的某张照片
predict_one_image(image_path='./data/第六周人脸/Angelina Jolie/001_fe3347c0.jpg', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)
预测结果是:Angelina Jolie

五、模型评估

best_model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, best_model, loss_fn)
epoch_test_acc
0.7555555555555555
best_acc
0.7555555555555555

二者一致,说明best_model模型保存正确!

个人总结:

  1. 预训练权重:使用预训练权重可以让模型具备基础图像特征提取能力,帮助模型快速收敛。
  2. Best model:有时,并非最后一个训练epoch的模型为最佳,我们可以通过深复制,记录最佳模型以及参数。
  • 42
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值