本文介绍了如何使用深度优先搜索(DFS)算法解决自然数拆分问题。题目要求将大于1的自然数n拆分成若干个小于n的自然数之和,并按字典序输出所有可能的拆分方案。文章首先给出了n=7时的14种拆分示例,随后详细解释了DFS的解题思路,包括如何通过递归枚举所有可能的拆分组合,并确保输出顺序符合字典序。代码实现部分展示了如何使用C++编写DFS函数,并通过主函数调用完成拆分和输出。最后,文章总结了解决此类问题的关键点,强调了DFS逻辑和字典序处理的重要性,并建议通过多练习来加深理解。
前言
本次训练内容
- 训练DFS处理数的拆分的问题。
- 对编码习惯的养成。
- 训练解题思维。
一、题目
任何一个大于1的自然数n,总可以拆分成若干个小于n的自然数之和。
当n=7共14种拆分方法:
7=1+1+1+1+1+1+1
7=1+1+1+1+1+2
7=1+1+1+1+3
7=1+1+1+2+2
7=1+1+1+4
7=1+1+2+3
7=1+1+5
7=1+2+2+2
7=1+2+4
7=1+3+3
7=1+6
7=2+2+3
7=2+5
7=3+4
total=14
输入格式
输入n。
输出格式
按字典序输出具体的方案。
样例输入
7
样例输出
7=1+1+1+1+1+1+1 7=1+1+1+1+1+2 7=1+1+1+1+3 7=1+1+1+2+2 7=1+1+1+4 7=1+1+2+3 7=1+1+5 7=1+2+2+2 7=1+2+4 7=1+3+3 7=1+6 7=2+2+3 7=2+5 7=3+4
二、解题思路
这道题目是一道基础的自然数拆分题,就是枚举所有把正整数 n 拆分为若干个所有部分都小于 n 的自然数之和,通过形参 x传递上一次选取的值,每次只枚举从 x开始的值,从而自动保证 a1 ≤ a2 ≤ ⋯
,输出顺序即是字典序。
#include <bits/stdc++.h>
using namespace std;
int n;
vector<int> Array;
void dfs(int x, int y, bool is_root) {//x:剩余的拆分和,y:下一部分最小可以取到的值,is_root标记
if (x == 0) {
if (Array.size() >= 2) {// 输出n=a1+a2+⋯+ak
cout << n << "=";
for (int i = 0; i < Array.size(); i++) {
if (i) cout << "+";
cout << Array[i];
}
cout << "\n";
}
return;
}
int maxv = is_root ? n - 1 : x;
for (int i = y; i <= maxv; i++) {//枚举
Array.push_back(i);
dfs(x - i, i, false);
Array.pop_back();
}
}
int main() {
cin >> n;
dfs(n, 1, true);
return 0;
}
这道题的字典序就是从左到右并且从小到大排序。
总结
今天的题目和几天前Day30那天的做法类似,就是输入一个整数,然后对其进行拆分,然后再处理好后,最后进行组合。今天的字典序部分做起来有点难受,然后还要按照它的格式输出;这个位置想了挺久,还有就是DFS的逻辑部分也是,经常会绕着绕着就迷糊,这个章节还得多多练习。