❝图对比学习旨在通过对比增广视图来学习图的表示,引起了相当多的关注。以前的研究在理论上简单地假设图及其增广视图为正对,其它的为负对。然而,图结构是复杂的,这引起了一个疑问:这一假设在现实中是否仍然成立?
❞
今天分享一篇发表在 IJCAI-23 上的文章:
作者提出了一种多尺度子图对比学习方法MSSGCL,能够表征细粒度的语义信息。具体来说,作者基于子图采样生成不同尺度的全局和局部视图,并根据它们的语义关联构建多种对比关系,以提供更丰富的自监督信号。对八个图分类的真实数据集的大量实验和参数分析很好地证明了该方法的有效性。
1 Background
最近,图神经网络(GNN)已经成为处理各种复杂图数据的主要技术,例如社交网络分析,预测药物属性,蛋白质功能等等。
现有的GNN训练多采用监督学习范式,需要大量的带有标签的数据作为支撑。然而,在实际应用中,收集大量的标记图数据并不容易。因此,图对比学习(Graph contrast Learning, GCL)作为一种典型的自监督学习范式备受关注。其基本思想是:最大化来自同一锚图(正对)的增广视图的一致性,同时最小化来自不同锚图(负对)的视图的一致性。因此,图对比学习的核心是保证增广视图之间的语义信息要匹配,即语义相似的视图应该具有相似的表示。
然而,增广视图通常是采用各种图增强策略得来(节点删除,边缘扰动,