Description | ||
单调题目描述n=∑ki=0ai⋅bi,b≥2,如果i>0时,ai>ai−1,那么我们称这个数n是在b进制下是单调的。比如6,在3进制下为20(3),所以6在3进制下是单调的。现在已知n,求最小的基b,使得n是单调的。 输入第一行是一个整数T(1≤T≤10000),表示样例的个数。 每行一个整数n,2≤n≤109。 输出依次每行输出一个样例的结果。 样例输入2 2 1000000000 样例输出2 32 |
这一题要把n换成b进制再来判断,因此可以通过数组来储存改进制的每一位,然后对其单调性判断。
#include<stdio.h>
int a[100] = {0};//进制
int main()
{
int t;
scanf("%d", &t);
while(t--){
int n;
scanf("%d", &n);
for(int b=2;;b++){
int i=0;
int n0=n;
while(n0>0){//转化为进制并储存
a[i] = n0%b;
n0 = n0/b;
i++;
}
int flag=1;//1默认是单调
for(int j=i-1;j>0;j--){//判断单调
if(a[j]<=a[j-1]){//不单调了
flag=0;
break;
}
}
if(flag==1){
printf("%d\n", b);
break;
}
//
}
}
return 0;
}