一、整数在内存中的存储
首先我们要知道数据在计算机是以二进制的形势存储即01,为了方便数据在计算机的存储、计算这里我们规定使用(统一用32位举例)
(一)原码、反码、补码
1.原码:直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。
如3的原码就是00000000 00000000 00000000 00000011 (每8个数字占1个字节,共4字节,即整型的大小)
2.反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
这里我们要先介绍一下------符号位:开头第一个数字0为正1为负
如3原码就是00000000 00000000 00000000 00000011
-3的原码就是10000000 00000000 00000000 00000011
如3的反码01111111 11111111 11111111 11111100
3.补码:反码+1就得到补码。
如3的补码就是01111111 11111111 11111111 11111101
对于整形来说:数据存放内存中其实存放的是补码。
并且计算机进行二进制运算的时候统一都是用的都是补码
为什么呢? 在计算机系统中,数值⼀律⽤补码来表⽰和存储。 原因在于,使⽤补码,可以将符号位和数值域统⼀处理; 同时,加法和减法也可以统⼀处理(CPU只有加法器)
(二)大小端字节序
1.什么是⼤⼩端? 其实超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分 为⼤端字节序存储和⼩端字节序存储,下⾯是具体的概念:
⼤端(存储)模式:是指数据的低位字节内容保存在内存的⾼地址处,⽽数据的⾼位字节内容,保存 在内存的低地址处。
⼩端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,⽽数据的⾼位字节内容,保存 在内存的⾼地址处。
2.举个例子
在VS2022中
可以看到低地址放的是00001011对应的正是小端存储
如果是大端存储
应是
0x000...94 00
0x000...95 00
0x000...96 00
0x000...97 0b
二、浮点数在内存中的存储(概述)
根据国际标准IEEE(电⽓和电⼦⼯程协会) 754,任意⼀个⼆进制浮点数V可以表⽰成下⾯的形式:
V = (−1)^S ∗ M ∗ 2^E
• (−1)^S 表⽰符号位
当S=0,V为正数;
当S=1,V为负数
• M 表⽰有效数字,M是⼤于等于1,⼩于2的
• 2^E 表⽰指数位 举例来说: ⼗进制的5.0,写成⼆进制是 101.0 ,相当于 1.01×2^2 。
那么,按照上⾯V的格式,可以得出S=0,M=1.01,E=2。
⼗进制的-5.0,写成⼆进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。
IEEE 754规定:
对于32位的浮点数,最⾼的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
对于64位的浮点数,最⾼的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
浮点数存的过程 IEEE 754 对有效数字M和指数E,还有⼀些特别规定。 前⾯说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表⽰⼩数部分。
IEEE 754 规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的 xxxxxx部分。
⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的⽬ 的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保 存24位有效数字。
⾄于指数E,情况就⽐较复杂 ⾸先,E为⼀个⽆符号整数(unsigned int) 这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我 们知道,科学计数法中的E是可以出现负数的,
所以IEEE 754规定,存⼊内存时E的真实值必须再加上 ⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。⽐如,2^10的E是 10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001。
指数E从内存中取出还可以再分成三种情况:
1.E不全为0或不全为1
即指数E的计算值减去127(或1023),得到真实值,再将有效 数字M前加上第⼀位的1。 ⽐如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其 阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补⻬0到23位 00000000000000000000000,则其⼆进制表⽰形式为:
0 01111110 00000000000000000000000
2.E全为0
这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,⽽是还 原为0.xxxxxx的⼩数。这样做是为了表⽰±0,以及接近于0的很⼩的数字。
0 00000000 00100000000000000000000
3.E全为1
这时,如果有效数字M全为0,表⽰±⽆穷⼤(正负取决于符号位s);
1 0 11111111 00010000000000000000000
好了,关于浮点数、整数再内存中的存储的表⽰规则,就说到这⾥。