【C语言】整数和浮点数在内存中的存储


前言

一、整数在内存中的存储(涉及原码、反码、补码和大小端字节序的知识)
二、浮点数在内存中的存储(将浮点数的符号位、有效数字和指数位等信息转换后存入内存)


一、整数在内存中的存储

1、原码、反码、补码

整数在内存中是以2进制的形式存储的,整数的2进制表示方法有三种,即原码、反码和补码。对于整数来说,数据存放在内存中的其实是它的补码

有符号整数的三种表示方法均有符号位和数值位两部分,2进制序列中,最高位的1位是被当做符号位,剩余的都是数值位。符号位都是用0表示“正”,用1表示“负”。

正整数的原、反、补码都相同。负整数的三种表示方法各不相同, 如下所示:
原码:直接将数值按照正负数的形式翻译成二进制得到的就是原码。
反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码:反码+1就得到补码。
补码直接得到原码也是可以使用:取反,+1的操作。

在这里插入图片描述

有符号整数原、反、补码的转换,示例如下:

int a = 1;//int型整数在内存中占4字节,也就是32bit
原码:00000000 00000000 00000000 00000001//最高位是符号位,正整数的符号位用‘0’表示
//正整数的原、反、补码都相同,所以无需转换

int b = -1;
原码:10000000 00000000 00000000 00000001//最高位是符号位,负整数的符号位用‘1’表示
反码:11111111 11111111 11111111 11111110//原码符号位不变,数值位按位取反,得到反码
补码:11111111 11111111 11111111 11111111//反码+1,得到补码

2、大小端字节序

内存是被划分为⼀个个的内存单元,每个内存单元的大小取1个字节(8个比特位)。其中每个内存单元都是有⼀个编号的,在计算机中我们把内存单元的编号也称为地址。
在这里插入图片描述
当我们创建一个int类型变量的时候,会在内存中开辟4字节的空间存储这个变量,比如现在我们创建一个int变量a如下:

#include <stdio.h>

int main()
{
	int a = 0x11223344;

	return 0;
}

内存中会开辟4个字节的空间来存储变量a,这时候我们又会遇到一个问题,那就是这个大小为4字节的数据是按照哪一种存储顺序存放在内存中的,是正着存还是反着存的。
在这里插入图片描述

我们对代码进行调试来观察变量a在内存中的存储顺序,我们可以看到在a中的 0x11223344 这个数据是按照字节为单位倒着存储的。图示如下:
在这里插入图片描述
在这里插入图片描述
那么所有数据在内存都会按照以上这种倒着的顺序存储嘛?其实正着存和倒着存这两种存储模式都是存在的,只不过不同的编译器可能采取的是不同的存储模式,这两种不同的存储模式又叫大端(存储)模式和小端(存储)模式。

其实超过一个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分为大端字节序存储和小端字节序存储,下面是具体的概念:
大端(存储)模式
是指数据的低位字节内容保存在内存的高地址处,而数据的高位字节内容,保存在内存的低地址处。
小端(存储)模式
是指数据的低位字节内容保存在内存的低地址处,而数据的高位字节内容,保存在内存的高地址处。

在这里插入图片描述

以上代码的运行和调试均是在 VS2022 上进行的,所以 VS2022 采取的就是小端(存储)模式。

二、浮点数在内存中的存储

常见的浮点数:3.14159、1E10(1.0×1010)等,浮点数家族包括: float、double、long double 类型。

根据国际标准IEEE(电气和电子工程协会) 754,任意⼀个二进制浮点数V可以表示成下面的形式:
V = (−1) S ∗ M ∗ 2E
• (−1)S 表示符号位,当S=0,V为正数;当S=1,V为负数
• M 表示有效数字,M是大于等于1,小于2的
• 2E 表示指数位

举例来说:
十进制的5.0,写成⼆进制是 101.0 ,相当于 1.01×2^2 。那么,按照上面V的格式,可以得出S=0,M=1.01,E=2。
十进制的-5.0,写成⼆进制是 -101.0 ,相当于 -1.01×2^2 。那么,S=1,M=1.01,E=2。

IEEE 754规定:
对于32位的浮点数,最高的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
对于64位的浮点数,最高的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M

在这里插入图片描述

IEEE 754 对有效数字M和指数E,还有⼀些特别规定。
对于有效数字M:
前面提及 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。
IEEE 754 规定,在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后面的xxxxxx部分。比如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的目的,是节省1位有效数字。以32位浮点数为例,留给M只有23位,将第⼀位的1舍去以后,等于可以保存24位有效数字。

对于指数E:
首先,E为⼀个无符号整数(unsigned int)。这意味着,如果E为8位,它的取值范围为0 ~ 255;如果E为11位,它的取值范围为0 ~ 2047。但是,我们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存入内存时E的真实值必须再加上⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023。比如,210的E是10,所以保存成32位浮点数时,必须保存成10+127=137,即10001001;还有2-10的E是-10,保存成32位浮点数时,必须保存成-10+127=117,即01110101

示例演示十进制浮点数一步步转换成float类型浮点数在内存中存储的二进制形式:

              十进制浮点数:      53.75                       -65.625                   0.625
              二进制浮点数:     110101.11                  -1000001.101                0.101
转换成(−1)^S ∗M ∗2^E的形式:(−1)^0 ∗1.1010111 ∗2^5    (−1)^1 ∗1.000001101 ∗2^6   (−1)^0 ∗1.01 ∗2^(-1)

(1) (−1)^0 ∗1.1010111 ∗2^5 的S=0,M=1.1010111, E=5
根据IEEE 754 对有效数字M和指数E的存储规则;
M只保存小数部分:1010111
E需要加上⼀个中间数再保存:5+127=132  132转换成2进制是10000100
所以最终转换成的float类型浮点数的二进制形式:0 10000100 10101110000000000000000

(2) (−1)^1 ∗1.000001101 ∗2^6 的S=1,M=1.000001101, E=6
根据IEEE 754 对有效数字M和指数E的存储规则;
M只保存小数部分:000001101
E需要加上⼀个中间数再保存:6+127=133  132转换成2进制是10000101
所以最终转换成的float类型浮点数的二进制形式:1 10000101 00000110100000000000000

(3) (−1)^0 ∗1.01 ∗2^(-1) 的S=0,M=1.01, E=-1
根据IEEE 754 对有效数字M和指数E的存储规则;
M只保存小数部分:01
E需要加上⼀个中间数再保存:-1+127=126  132转换成2进制是01111110
所以最终转换成的float类型浮点数的二进制形式:0 01111110 01000000000000000000000

最后再补充一个知识点:对于 IEEE 754格式的浮点数,E全为0或全为1时,有其特别的解释。 如下:
(1)E全为0,且M全为0
表示+0/-0。零的符号取决于符号位S。

0 00000000 00000000000000000000000 // 表示+0
1 00000000 00000000000000000000000 // 表示 -0

(2)E全为1,且M全为0
表示+∞/-∞。+∞在数值上大于所有有限数,-∞在数值上小于所有有限数。

0 11111111 00000000000000000000000 // 表示+∞
1 11111111 00000000000000000000000 // 表示 -∞


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值