法1 dp
状态:f [i] 表示以a[i]结尾的集合的最大长度
计算: 就遍历一轮 :对于每一次要求的a[i]看0-i的下标里的小于a[i]的最大长度+1 或者说就是不选的情况max( f[ i ], f [ j ]+1)
我为什么可以不选?
可能 j 取 0-i 中的某个数时有一个较大的 f[i]
#include <bits/stdc++.h>
using namespace std;
int n, a[1100], f[1100];
//f[i]表示以a[i]结尾的最大长度
int main()
{
cin>>n;
for(int i = 1; i <= n; i ++) cin >> a[i];
for(int i = 1; i <= n; i ++){
f[i] = 1;
for( int j =1; j<=i; j ++ ){
if(a[i]>a[j]) f[i] = max(f[i], f[j] + 1);
}
}
int res =0;
for ( int i = 1 ;i <= n; i ++ ) res = max(res,f[i]);
cout << res;
return 0;
}
法2 dp + 贪心 + 二分
分析:共性是什么?
要想求a[i]轮的最长上升子序列的长度即看a[i]能加在 不看a[i]的最长序列的后面 或者 说不考虑a[i]直接有更好更大的长度
因此引入了q[i]来 记录长度为i时最长上升子序列的最小元素的值。
为什么要记录最小元素值?
我们说在同一长度下,最后一个元素越小 对于整个序列要求的最长上升子序列的贡献越大,因为越小的元素值方便后面越大的元素更有可能多的加进去。
q[]数组是严格单调递增的。
因为:q[5]要想得到长度5 肯定要由长度4 转移而来 那么这个放到长度为5的元素肯定不能比 放到长度为4地方的元素小。要是小的话 不能保证上升条件了。
找状态为a[i]的最长上升子序列长度 :在q[] 中找哪个数刚好小于a[i](q[]后一个大于a[i]),长度取max( len, r+1) 其中r代表a[i]在q[]中找到的下标。
怎么找q[]<a[i]
二分法 l = 0, r = len; q[ 0~i ]中记录着下标为i即长度为i 的最小结尾元素。边界 r 就是上一次的最大长度, 当找到了l=r=mid时,此时len为max(len, r +1) { r是不算a[i]的那个序列的长度 q[]当前的下标,再加上a[]贡献的长度1.}
遍历完一轮后的len即为所有a[]均考虑过的最大长度。
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
int n;
int a[N], q[N];
int main()
{
cin >> n;
for ( int i = 0; i < n; i ++ ) cin >> a[i];
q[0] = -2e9;//有负数 初始化为一个很小的数 不会存在比这个更小的的数了 a[i]很小时的q【】长度为0 也算找到了
int len = 0;
for ( int i = 0; i < n; i ++ ){
int l = 0, r = len;
while(l < r){
int mid = l + r + 1>> 1;
if( q[mid] < a[i]) l = mid;
else r = mid-1;
}
len = max(len, r+1);
q[r+1] = a[i];
//for ( int i = 0; i< len; i ++) cout << q[i]<<" **"<<endl;
}
cout << len;
return 0;
}