最长上升子序列

法1 dp

状态:f [i] 表示以a[i]结尾的集合的最大长度 

计算: 就遍历一轮   :对于每一次要求的a[i]看0-i的下标里的小于a[i]的最大长度+1 或者说就是不选的情况max( f[ i ], f [ j ]+1)

我为什么可以不选?

可能 j 取 0-i 中的某个数时有一个较大的 f[i]

#include <bits/stdc++.h>
using namespace std;
int n, a[1100], f[1100];
//f[i]表示以a[i]结尾的最大长度
int main()
{
    cin>>n;
    for(int i = 1; i <= n; i ++) cin >> a[i];
    for(int i = 1; i <= n; i ++){
        f[i] = 1;
        for( int j =1; j<=i; j ++ ){
            if(a[i]>a[j]) f[i] = max(f[i], f[j] + 1);
        }
    }
    int res =0;
    for ( int i = 1 ;i <= n; i ++ ) res = max(res,f[i]);
    cout << res;
    return 0;
}

法2 dp + 贪心 + 二分

分析:共性是什么?

要想求a[i]轮的最长上升子序列的长度即看a[i]能加在 不看a[i]的最长序列的后面 或者 说不考虑a[i]直接有更好更大的长度

因此引入了q[i]来 记录长度为i时最长上升子序列的最小元素的值。

为什么要记录最小元素值?

我们说在同一长度下,最后一个元素越小 对于整个序列要求的最长上升子序列的贡献越大,因为越小的元素值方便后面越大的元素更有可能多的加进去。

q[]数组是严格单调递增的。

因为:q[5]要想得到长度5 肯定要由长度4 转移而来 那么这个放到长度为5的元素肯定不能比 放到长度为4地方的元素小。要是小的话 不能保证上升条件了。

找状态为a[i]的最长上升子序列长度 :在q[] 中找哪个数刚好小于a[i](q[]后一个大于a[i]),长度取max( len, r+1) 其中r代表a[i]在q[]中找到的下标。

怎么找q[]<a[i]

二分法 l = 0, r = len; q[ 0~i ]中记录着下标为i即长度为i 的最小结尾元素。边界 r 就是上一次的最大长度, 当找到了l=r=mid时,此时len为max(len, r +1)  { r是不算a[i]的那个序列的长度 q[]当前的下标,再加上a[]贡献的长度1.}

遍历完一轮后的len即为所有a[]均考虑过的最大长度。

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
int n;
int a[N], q[N];

int main()
{
    cin >> n;
    for ( int i = 0; i < n; i ++ ) cin >> a[i];
    q[0] = -2e9;//有负数 初始化为一个很小的数 不会存在比这个更小的的数了 a[i]很小时的q【】长度为0 也算找到了
    int len = 0;
    for ( int i = 0; i < n; i ++ ){
        int l = 0, r = len;
        while(l < r){
            int mid = l + r + 1>> 1;
            if( q[mid] < a[i]) l = mid;
            else r = mid-1;
        }
        len = max(len, r+1);
        q[r+1] = a[i];
        
        //for ( int i = 0; i< len; i ++) cout << q[i]<<" **"<<endl;
    }
    
    cout << len;
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值