动态规划(初步)力扣509斐波那契数列

本文介绍了动态规划问题解决的五个关键步骤:确定dp数组含义,初始化,列出递推关系式(如斐波那契数列),选择遍历顺序(正序),并通过实例演示如何推导dp数组。作者以斐波那契数列为例,提供了C++代码实现。
摘要由CSDN通过智能技术生成

动态规划其实说白了就是一个for循环,最难的部分在于我们审题,去看dp数组的含义,并且确定dp数组的for循环遍历方式,是正序,是倒序还是可能所有的奇数所有的偶数分开遍历,所以我总结出做动态规划的五个步骤

1,确定dp数组含义

2,dp数组初始化 

3,列出本题的dp关系式,比如斐波那契就是dp[n]=dp[n-1]+dp[n-2] 

4,确定遍历顺序 

5,举例推导dp数组

首先我们引入斐波那契这道题目

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

我们按步骤一步一步来

1,dp[n]=m 表示第n个数是m

2,初始化,dp[1]=1;dp[2]=1

3,递推关系式dp[n]=dp[n-1]+dp[n-2] 

4,正序遍历

5,试着推几个dp数,来演算,在动态规划里debug的最好方法就是打印出来dp数组

class Solution {
public:
    int fib(int N) {
        if (N <= 1) return N;
        vector<int> dp(N + 1);
        dp[0] = 0;
        dp[1] = 1;
        for (int i = 2; i <= N; i++) {
            dp[i] = dp[i - 1] + dp[i - 2];
        }
        return dp[N];
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值