动态规划其实说白了就是一个for循环,最难的部分在于我们审题,去看dp数组的含义,并且确定dp数组的for循环遍历方式,是正序,是倒序还是可能所有的奇数所有的偶数分开遍历,所以我总结出做动态规划的五个步骤
1,确定dp数组含义
2,dp数组初始化
3,列出本题的dp关系式,比如斐波那契就是dp[n]=dp[n-1]+dp[n-2]
4,确定遍历顺序
5,举例推导dp数组
首先我们引入斐波那契这道题目
斐波那契数 (通常用 F(n)
表示)形成的序列称为 斐波那契数列 。该数列由 0
和 1
开始,后面的每一项数字都是前面两项数字的和。也就是:
F(0) = 0,F(1) = 1 F(n) = F(n - 1) + F(n - 2),其中 n > 1
给定 n
,请计算 F(n)
。
示例 1:
输入:n = 2 输出:1 解释:F(2) = F(1) + F(0) = 1 + 0 = 1
示例 2:
输入:n = 3 输出:2 解释:F(3) = F(2) + F(1) = 1 + 1 = 2
示例 3:
输入:n = 4 输出:3 解释:F(4) = F(3) + F(2) = 2 + 1 = 3
我们按步骤一步一步来
1,dp[n]=m 表示第n个数是m
2,初始化,dp[1]=1;dp[2]=1
3,递推关系式dp[n]=dp[n-1]+dp[n-2]
4,正序遍历
5,试着推几个dp数,来演算,在动态规划里debug的最好方法就是打印出来dp数组
class Solution {
public:
int fib(int N) {
if (N <= 1) return N;
vector<int> dp(N + 1);
dp[0] = 0;
dp[1] = 1;
for (int i = 2; i <= N; i++) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[N];
}
};