短期光伏发电量短期预测(Python代码,基于SARIMA(季节性自回归移动平均模型)和Prophet工具结合预测未来发电量)

 一.代码流程(运行效果:

短期光伏发电量短期预测(Python代码,基于SARIMA(季节性自回归移动平均模型)和Prophet工具结合预测未来发电量)_哔哩哔哩_bilibili

模型流程:

  1. 导入所需的库,包括NumPy、Pandas、Matplotlib、Seaborn等,并设置Seaborn的图表样式为'darkgrid'。

  2. 读取两个数据集,分别为"Plant_1_Generation_Data.csv"和"Plant_1_Weather_Sensor_Data.csv",然后对数据进行处理,包括删除不需要的列和格式化日期时间。

  3. 创建两个图表的子图,一个包含每日产量图和AC & DC功率图,另一个包含每日产量和总产量的图。

  4. 对实际DC功率进行计算,计算每天DC功率转换成AC功率的损失百分比。

  5. 绘制所有源的DC功率图。

  6. 分析DC功率和时间的关系,绘制前11个源和后11个源的DC功率图。

  7. 分析温度数据,绘制模块温度和环境温度的图表。

  8. 选取最差的一个源,绘制该源的DC功率和每日产量图。

  9. 使用SARIMA(季节性自回归移动平均模型)和Prophet(Facebook开发的时间序列预测工具)进行时间序列预测。

  10. 绘制预测结果与原始数据的对比图,并计算预测性能指标,包括R²分数、平均绝对误差(MAE)和均方根误差(RMSE)。

二.数据集(68779条数据)

这些数据是在印度的两个太阳能发电厂收集的,时间跨度为34天。每对文件包含一个电力发电数据集和一个传感器读数数据集。电力发电数据集是在逆变器级别收集的,每个逆变器都连接着多行太阳能电池板。传感器数据是在发电厂级别收集的,是单个传感器阵列在发电厂中的最佳放置。

  • DATE_TIME: 表示日期和时间的时间戳,记录数据采集的具体时间点。
  • PLANT_ID: 发电厂的唯一标识符,用于区分不同的太阳能发电厂。
  • SOURCE_KEY: 太阳能发电设备的唯一标识符,用于区分不同的发电设备。
  • DC_POWER: 直流功率的测量值,表示从太阳能电池板产生的直流电功率。
  • AC_POWER: 交流功率的测量值,表示从逆变器转换后的交流电功率。
  • DAILY_YIELD: 每天的发电量,表示在给定日期内生成的总电量。
  • TOTAL_YIELD: 总发电量,表示从安装以来生成的总电量。

这些列提供了关于太阳能发电厂的重要信息,包括发电设备的功率输出、每天的发电量以及总发电量。通过这些数据,可以进行发电量的分析、设备性能的评估以及故障检测等任务。

开始时间

DATE_TIME PLANT_ID SOURCE_KEY DC_POWER AC_POWER DAILY_YIELD TOTAL_YIELD
15-05-2020 00:00 4135001 1BY6WEcLGh8j5v7 0 0 0 6259559
15-05-2020 00:00 4135001 1IF53ai7Xc0U56Y 0 0 0 6183645
15-05-2020 00:00 4135001 3PZuoBAID5Wc2HD 0 0 0 6987759
15-05-2020 00:00 4135001 7JYdWkrLSPkdwr4 0 0 0 7602960
15-05-2020 00:00 4135001 McdE0feGgRqW7Ca 0 0 0 7158
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值