1.预处理暴力打表----(杨辉三角递推公式)
·适用范围:n和m都较小时,受到二维数组的限制,一般最多只能开到四位数
·时间复杂度为O(n^n)
·代码:
void init_C()
{
for(int i=0;i<=n;i++)
{
c[i][0]=1;
for(int j=1;j<=i;j++)
{
c[i][j]=c[i-1][j]+c[i-1][j-1];
}
}
}
直观感受一下杨辉三角:
2.逆元法
·计算公式:
这个公式应该不陌生吧,看起来也不难实现,不过有一个地方要注意,就是int类型整除的缺陷,导致有可能算不出来正确值,这个时候就轮到逆元出场了。
·引入:
·逆元:
逆元素,是指一个可以取消另一给定元素运算的元素,在数学里,逆元素广义化了加法中的加法逆元和乘法中的倒数。
注:不会求逆元的可以看一下大佬们的博客http://t.csdnimg.cn/ugzeB,这里我们直接用费马小定理来解决这个问题。
·费马小定理(Fermat's little theorem)
是数论中的一个重要定理,在1636年提出。如果p是一个质数,而整数a不是p的倍数,则有a^(p-1)≡1(mod p)
·求逆元的代码(其实和快速幂差不多):
ll power(ll a,ll b)
{
ll res=1;
while(b)
{
if(b&1)res=res*a%mod;
a=a*a%mod;
b>>=1;
}
return res%mod;
}
·完整代码:
ll power(ll a,ll b)
{
ll res=1;
while(b)
{
if(b&1)res=res*a%mod;
a=a*a%mod;
b>>=1;
}
return res%mod;
}
ll C(ll n,ll m)
{
ll ans=1;
m=min(m,n-m);
for(ll i=1;i<=m;i++)
{
ll res=power(i,mod-2);//逆元
ans=ans*res%mod;
}
for(ll i=n-m+1;i<=n;i++)
{
ans=ans*i%mod;
}
return ans;
}
多次求组合数时预处理优化:
就是预处理阶乘和阶乘的逆元用数组存一下,来优化时间,第一种方法的形式差不多,用空间来换时间。
3.卢卡斯定理
·引入:
Lucas定理是用来求 c(n,m) mod p,p为素数的值。
这里就不细讲数学知识了,有兴趣的可以去网上看看推导过程
·适用范围:n,m很大,但mod较小
代码:
ll lucas(ll a,ll b)
{
if(a<mod&&b<mod)return C(a,b);
return lucas(a/mod,b/mod)*C(a%mod,b%mod)%mod;//递归实现
}
配合逆元法使用即可。
小结:
一般情况下还是第一种方法比较简单方便,不能用第一种时才会去选择第二种,第三种算是比较特殊的情况。小趴菜努力学习中ing!