数学专题1----组合数的三种求法

1.预处理暴力打表----(杨辉三角递推公式)

·适用范围:n和m都较小时,受到二维数组的限制,一般最多只能开到四位数

·时间复杂度为O(n^n)

·代码:

void init_C()
{
	for(int i=0;i<=n;i++)
	{
		c[i][0]=1;
		for(int j=1;j<=i;j++)
		{
			c[i][j]=c[i-1][j]+c[i-1][j-1];
		}
	}
}

 直观感受一下杨辉三角:

 

2.逆元法

·计算公式:

 这个公式应该不陌生吧,看起来也不难实现,不过有一个地方要注意,就是int类型整除的缺陷,导致有可能算不出来正确值,这个时候就轮到逆元出场了。

·引入:

·逆元:

逆元素,是指一个可以取消另一给定元素运算的元素,在数学里,逆元素广义化了加法中的加法逆元乘法中的倒数

注:不会求逆元的可以看一下大佬们的博客http://t.csdnimg.cn/ugzeB,这里我们直接用费马小定理来解决这个问题。

·费马小定理(Fermat's little theorem)

是数论中的一个重要定理,在1636年提出。如果p是一个质数,而整数a不是p的倍数,则有a^(p-1)≡1(mod p)

·求逆元的代码(其实和快速幂差不多):

ll power(ll a,ll b)
{
	ll res=1;
	while(b)
	{
		if(b&1)res=res*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	return res%mod;
}

 ·完整代码:

ll power(ll a,ll b)
{
	ll res=1;
	while(b)
	{
		if(b&1)res=res*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	return res%mod;
}

ll C(ll n,ll m)
{
	ll ans=1;
	m=min(m,n-m);
	for(ll i=1;i<=m;i++)
	{
		ll res=power(i,mod-2);//逆元
		ans=ans*res%mod;
	}
	for(ll i=n-m+1;i<=n;i++)
	{
		ans=ans*i%mod;
	}
	return ans;
}

 多次求组合数时预处理优化:

就是预处理阶乘和阶乘的逆元用数组存一下,来优化时间,第一种方法的形式差不多,用空间来换时间。

3.卢卡斯定理 

·引入:

Lucas定理是用来求 c(n,m) mod p,p为素数的值。

这里就不细讲数学知识了,有兴趣的可以去网上看看推导过程

 ·适用范围:n,m很大,但mod较小

代码:

ll lucas(ll a,ll b)
{
    if(a<mod&&b<mod)return C(a,b);
    return lucas(a/mod,b/mod)*C(a%mod,b%mod)%mod;//递归实现
}

配合逆元法使用即可。

小结:

一般情况下还是第一种方法比较简单方便,不能用第一种时才会去选择第二种,第三种算是比较特殊的情况。小趴菜努力学习中ing!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值