A10.传球游戏

传球游戏-普及-题目-ACGO题库

ACGO的第10题:传球游戏

题目描述

上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。

游戏规则是这样的:𝑛n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没有传出去的那个同学就是败者,要给大家表演一个节目。

聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了𝑚m次以后,又回到小蛮手里。两种传球方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有三个同学11号、22号、33号,并假设小蛮为11号,球传了33次回到小蛮手里的方式有11->22->33->11和11->33->22->11,共22种。

输入格式

一行,有两个用空格隔开的整数𝑛,𝑚(3≤𝑛≤30,1≤𝑚≤30)n,m(3≤n≤30,1≤m≤30)。

输出格式

11个整数,表示符合题意的方法数。

输入输出样例
  • 输入#1

    3 3

    输出#1

    2
说明/提示

40%的数据满足:3≤𝑛≤30,1≤𝑚≤203≤n≤30,1≤m≤20

100%的数据满足:3≤𝑛≤30,1≤𝑚≤303≤n≤30,1≤m≤30

思路:这是一道简单的动态规划题。先定义[dp[1001][1001],n,m,n代表人数,m代表传球的次数。dp[i][j]代表第i次传球传到j的位置的方案数,初始化dp[0][1]=1。我们知道第i次的方案数就应该是第i-1次传球到第j-1个人和第j+1个人的方案数的和,得出状态转移方程dp[i][j]=dp[i-1][left]+dp[i-1][right](left就是j-1,right就是j+1),但是在写时要考虑特殊情况,如果left==0那么left =n,如果right==n+1 那么right=1。最后输出dp[m][1]。

AC代码:

#include <bits/stdc++.h>
using namespace std;
int dp[1001][1001],n,m; //第i次传球传到j的位置的方案数 
int main(){
	dp[0][1]=1;
	cin>>n>>m;
	for(int i=1;i<=m;i++){
		for(int j=1;j<=n;j++){
			int left=j-1;
			if(left==0) left =n;
			int right=j+1;
			if(right==n+1) right=1;
			dp[i][j]=dp[i-1][left]+dp[i-1][right];
		}
	} 
	cout<<dp[m][1];
	return 0;
}

看到这了,就点赞关注吧!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值