ACGO的第10题:传球游戏
题目描述
上体育课的时候,小蛮的老师经常带着同学们一起做游戏。这次,老师带着同学们一起做传球游戏。
游戏规则是这样的:𝑛n个同学站成一个圆圈,其中的一个同学手里拿着一个球,当老师吹哨子时开始传球,每个同学可以把球传给自己左右的两个同学中的一个(左右任意),当老师再次吹哨子时,传球停止,此时,拿着球没有传出去的那个同学就是败者,要给大家表演一个节目。
聪明的小蛮提出一个有趣的问题:有多少种不同的传球方法可以使得从小蛮手里开始传的球,传了𝑚m次以后,又回到小蛮手里。两种传球方法被视作不同的方法,当且仅当这两种方法中,接到球的同学按接球顺序组成的序列是不同的。比如有三个同学11号、22号、33号,并假设小蛮为11号,球传了33次回到小蛮手里的方式有11->22->33->11和11->33->22->11,共22种。
输入格式
一行,有两个用空格隔开的整数𝑛,𝑚(3≤𝑛≤30,1≤𝑚≤30)n,m(3≤n≤30,1≤m≤30)。
输出格式
11个整数,表示符合题意的方法数。
输入输出样例
-
输入#1
3 3
输出#1
2
说明/提示
40%的数据满足:3≤𝑛≤30,1≤𝑚≤203≤n≤30,1≤m≤20
100%的数据满足:3≤𝑛≤30,1≤𝑚≤303≤n≤30,1≤m≤30
思路:这是一道简单的动态规划题。先定义[dp[1001][1001],n,m,n代表人数,m代表传球的次数。dp[i][j]代表第i次传球传到j的位置的方案数,初始化dp[0][1]=1。我们知道第i次的方案数就应该是第i-1次传球到第j-1个人和第j+1个人的方案数的和,得出状态转移方程dp[i][j]=dp[i-1][left]+dp[i-1][right](left就是j-1,right就是j+1),但是在写时要考虑特殊情况,如果left==0那么left =n,如果right==n+1 那么right=1。最后输出dp[m][1]。
AC代码:
#include <bits/stdc++.h>
using namespace std;
int dp[1001][1001],n,m; //第i次传球传到j的位置的方案数
int main(){
dp[0][1]=1;
cin>>n>>m;
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
int left=j-1;
if(left==0) left =n;
int right=j+1;
if(right==n+1) right=1;
dp[i][j]=dp[i-1][left]+dp[i-1][right];
}
}
cout<<dp[m][1];
return 0;
}
看到这了,就点赞关注吧!