Hadoop大数据技术

四、考核内容:

学生独立完成项目“某公司工资数据分析”和“学生成绩数据分析”,项目包括两个内容:1,熟练掌握HDFS(上传文件,下载文件等),MapReduce的功能和原理。2.掌握HBASE的基本操作和原理。 3.基于HBase和HDFS,利用Idea编程实现部门数据分析和学生成绩任务:①计算每个学生的平均成绩;②计算没门课程的平均成绩;③计算各个部门的总工资;④求各个部门的人数和平均工资;⑤求每个部门的最高工资;

部门工资数据说明:第1列是员工代码,第2列是员工姓名,第3列是员工所属部门,第4列是该员工上司的代码,第5列是员工进入公司的时间,第6列是员工工资,第7列奖金,第8列是部门代码。

数据示例:

 7369,SMITH,CLERK,7902,17-12月-80,800,0,20

 7499,ALLEN,SALESMAN,7698,20-2月-81,1600,300,30

 7521,WARD,SALESMAN,7698,22-2月-81,1250,500,30

 7566,JONES,MANAGER,7839,02-4月-81,2975,0,20

 7654,MARTIN,SALESMAN,7698,28-9月-81,1250,1400,30

学生成绩数据说明:第1列学号,第2列学生姓名,第3列语文成绩,第4列数学成绩,第5列英语成绩

数据示例:

1001,Tom,70,85,80

1002,Cat,85,90,70

Hadoop大数据技术是一种开源的分布式计算框架,它能够处理大规模数据集并提供高性能、可伸缩和可靠性的数据处理能力。 Hadoop的核心组件包括Hadoop分布式文件系统(HDFS)和Hadoop分布式计算框架(MapReduce)。HDFS是一个分布式文件系统,可以将大数据集存储在多台计算机上,并提供高容错性和高可用性。MapReduce是一种分布式计算模型,可以将大规模数据集分割成小块,分发给集群的多个计算节点进行并行处理,最后将结果合并返回。 除了核心组件之外,Hadoop还提供了一些其他工具和组件,如YARN(资源管理系统)、HBase(分布式数据库)、Hive(数据仓库和查询语言)、Pig(数据分析工具)等,这些工具和组件可以与Hadoop一起使用,提供更多丰富的功能和更灵活的数据处理方式。 Hadoop大数据技术的优势主要体现在以下几个方面: 1. 可扩展性:Hadoop能够通过增加计算节点来处理更大规模的数据集,从而实现高性能的数据处理能力。 2. 容错性:Hadoop将数据复制到不同的计算节点上,即使某个节点出现故障,数据依然可以恢复和访问。 3. 成本效益:Hadoop使用廉价的硬件来构建集群,相比传统的大型服务器,成本更低。 4. 处理速度快:由于使用分布式计算模型,Hadoop可以在短时间内处理大规模数据集,提供高速的数据处理能力。 5. 灵活性:Hadoop提供了各种工具和组件,使得开发人员可以根据自己的需求选择最合适的方式来处理数据。 总的来说,Hadoop大数据技术是一个非常强大的数据处理工具,可以帮助企业处理和分析大规模的数据,从而提供更准确、更全面的数据分析和决策支持。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值