【数据结构】1.时间和空间复杂度

本文详细探讨了如何衡量算法好坏,重点关注时间复杂度和空间复杂度的概念、大O表示法的应用,以及通过实例分析了多个常见算法的时间复杂度和空间复杂度。
摘要由CSDN通过智能技术生成

目录

1.如何衡量一个算法的好坏

2.算法效率

3.时间复杂度

3.1时间复杂度的概念

3.2大O的渐进表示法

3.3常见时间复杂度计算举例

4.空间复杂度


1.如何衡量一个算法的好坏

下面求斐波那契数列的算法是好还是不好,为什么?该如何衡量一个算法的好坏呢?

public static long Fib(int N){
if(N < 3){
return 1;
}
return Fib(N-1) + Fib(N-2);
}

2.算法效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度,而空间效率被称为空间复杂度。时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法多需要的额外空间。在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的高度了,所以我们如今不用再特别关注一个算法的空间复杂度。

3.时间复杂度

3.1时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个数学函数,它定量描述了该算法的运行时间,一个算法执行所消耗的时间,从理论上来说,是不能算出来的,只有把你的程序放在机器上跑起来,才能知道。算法中的基本操作的执行次数,为算法的时间复杂度。

3.2大O的渐进表示法
// 请计算一下func1基本操作执行了多少次?
void func1(int N){
int count = 0;
for (int i = 0; i < N ; i++) {
for (int j = 0; j < N ; j++) {
count++;
}
}
for (int k = 0; k < 2 * N ; k++) {
count++;
}
int M = 10;
while ((M--) > 0) {
count++;
}
System.out.println(count);
}

Func1执行的基本操作数:

F(N)=N^2+2*N+10

  • N=10 F(N)=130
  • N=100 F(N)=10210
  • N=1000F(N)=1002010

实际中我们计算时间复杂度时,我们不一定要计算精确的执行次数,而只需要大概执行次数,那么这里我们使用大O的渐进表示法。

3.3常见时间复杂度计算举例

【实例1】

// 计算func2的时间复杂度?
void func2(int N) {
int count = 0;
for (int k = 0; k < 2 * N ; k++) {
count++;
}
int M = 10;
while ((M--) > 0) {
count++;
}
System.out.println(count);
}

【实例2】

// 计算func3的时间复杂度?
void func3(int N, int M) {
int count = 0;
for (int k = 0; k < M; k++) {
count++;
}
for (int k = 0; k < N ; k++) {
count++;
}
System.out.println(count);
}

【实例3】

// 计算func4的时间复杂度?
void func4(int N) {
int count = 0;
for (int k = 0; k < 100; k++) {
count++;
}
System.out.println(count);
}

【实例4】

// 计算bubbleSort的时间复杂度?
void bubbleSort(int[] array) {
for (int end = array.length; end > 0; end--) {
boolean sorted = true;
for (int i = 1; i < end; i++) {
if (array[i - 1] > array[i]) {
Swap(array, i - 1, i);
sorted = false;
}
}
if (sorted == true) {
break;
}
}
}

【实例5】

// 计算binarySearch的时间复杂度?
int binarySearch(int[] array, int value) {
int begin = 0;
int end = array.length - 1;
while (begin <= end) {
int mid = begin + ((end-begin) / 2);
if (array[mid] < value)
begin = mid + 1;
else if (array[mid] > value)
end = mid - 1;
else
return mid;
}
return -1;
}

【实例6】

// 计算阶乘递归factorial的时间复杂度?
long factorial(int N) {
return N < 2 ? N : factorial(N-1) * N;
}

【实例7】

// 计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {
return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}

【实例答案】

  1. 实例1基本操作执行了2N+10次,通过推导大O阶方法知道,时间复杂度为O(N)
  2. 实例2基本操作执行了M+N次,有两个未知数M和N,时间复杂度为O(N+M)
  3. 时间复杂度为(O1)
  4. 时间复杂度为O(N^2)
  5. 时间复杂度为:O(log2N)
  6. 时间复杂度为:O(N)
  7. 时间复杂度为:O(2^N)

4.空间复杂度

空间复杂度时一个算法在运行过程中临时占用存储空间大小的量度。使用大O渐进表示法

【实例1】

// 计算bubbleSort的空间复杂度?
void bubbleSort(int[] array) {
for (int end = array.length; end > 0; end--) {
boolean sorted = true;
for (int i = 1; i < end; i++) {
if (array[i - 1] > array[i]) {
Swap(array, i - 1, i);
sorted = false;
}
}
if (sorted == true) {
break;
}
}
}

【实例2】

// 计算fibonacci的空间复杂度?
int[] fibonacci(int n) {
long[] fibArray = new long[n + 1];
fibArray[0] = 0;
fibArray[1] = 1;
for (int i = 2; i <= n ; i++) {
fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
}
return fibArray;
}

【实例3】

// 计算阶乘递归Factorial的空间复杂度?
long factorial(int N) {
return N < 2 ? N : factorial(N-1)*N;
}

【实例答案】

  1. 实例1使用了常数个额外空间,所以空间复杂度为O(1。.
  2. 实例2动态开辟了N个空间,空间复杂度为O(N)。
  3. 实例3递归调用了N次,开辟了N个栈帧,每个栈帧受用了常数个空间。空间复杂度为O(N)

  • 16
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值