《数据结构与算法》算法的时间复杂度和空间复杂度

1 算法效率

1.1 如何衡量一个算法的好坏

如何衡量一个算法的好坏呢?比如对于一下斐波那契数列:

long long Fib(int N)
{
  if(N < 3)
    return 1;

  return Fib(N - 1) + Fib(N - 2);
}

斐波那契数列的递归实现方式非常简洁,但是简介就一定是好的吗?我们应该如何衡量它的好坏呢?

1.2 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间资源。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法的运行快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早期,计算机的存储内容很小,所以对空间复杂度很是在乎,但是现在计算机的存储容量已经到了很高的程度,所以我们如今已经不需要再特别关注一个算法的空间复杂度了。

空间可以重复利用 但是时间只能叠加 

2 时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数(注意这里的函数不是指的C语言中我们所说的函数),它定量描述了该算法的运行时间。一个算法执行所消耗的时间,从理论上来说,是不能够算出来的,只有你把你的程序放在机器上跑起来才能知道。但是我们需要每个算法都上机测试吗?可以是可以,但是这样会不会太麻烦了?因此我们才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

//Func1中++count语句一共执行了多少次?

void Func1(int N)
{
  int count = 0;
  for(int i =0; i < N; i++)
  {
    for(int j = 0; j < N; j++)
    {
      ++count;
    }
  }

  for(int m = 0; m < 3 * N; m++)
  {
    ++count;
  }

  int n = 15;
  while(n--)
  {
    ++count;
  }

  printf("%d\n", count);
}

 Func1 执行的基本操作次数:

                                           F(N) = N^{2} + 3 N + 15

  • N = 10          F(N) = 145
  • N = 100        F(N) = 10315
  • N = 1000      F(N) = 1003015

实际我们在计算时间复杂度时,我们其实并不是一定要计算精确的执行次数,而只需要大概执行次数即可,那么这里我们就要使用大O的渐进表示法。

2.2 大O的渐进表示法 

大O符号(Big O notation):是用于描述函数渐进行为的数学符号。

推导大O阶的方法:

  1. 用常数1表示运行时间中的所有加法常数。
  2. 在修改后的运行次数函数中,只保留最高阶项。
  3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数,得到的结果就是大O阶。

使用大O的渐进表示法以后,Func1的时间复杂度为:

                                                                         O(N^{2})

  •  N = 10       F(N) = 100
  • N = 100      F(N) = 10000
  • N = 1000    F(N) = 1000000

通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的值,简单明了的表示出了执行次数。

另外有些算法的时间复杂度存在最好、平均和最坏的情况:

  • 最坏的情况:任意输入规模的最大运行次数(上界)
  • 平均的情况:任意输入规模的期望运行次数
  • 最好的情况:任意输入规模的最小运行次数(下界)

例如:在一个长度为N的数组中搜索一个数据x

  • 最坏的情况:N次找到
  • 平均的情况:N/2次找到
  • 最好的情况:1次找到

在实际情况下一般关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为O(N)

2.3 常见时间复杂度的计算案例 

例一

//计算Func2的时间复杂度
void Func2(int N)
{
  int count = 0;
  for(int k = 0; k < 2*N; ++k)
  {
    ++count;
  }
  int M = 20;
  while(M--)
  {
    ++count;
  }

  printf("%d\n", count);
}

基本操作执行了2N + 20次,通过推导大O阶方法可得,时间复杂度为O(N) 

例二

//计算Func3的时间复杂度
void Func3(int N, int M)
{
  int count = 0;
  for(int k = 0; k < M; ++k)
  {
    ++count;
  }

  for(int k = 0; k < N; ++k)
  {
    ++count;
  }

  printf("%d\n", count);
}

基本操作执行了M + N次,有两个未知数M和N,时间复杂度为O(M+N) 

例三

//计算Func4的时间复杂度
void Func4(int N)
{
  int count = 0;
  for(int k = 0; k < 100; ++k)
  {
    ++count;
  }

  printf("%d\n", count);
}

 基本操作执行了100次,通过推导大O阶方法可得,时间复杂度为O(1)

例四

//计算strchr的时间复杂度
const char* strchr(const char* str, int character);

基本操作执行最好的情况是1次拿下,最坏的情况就是N次,时间复杂度一般是看最坏的情况,所以时间复杂度为O(N)

例五

//计算BubbleSort的时间复杂度
void BubbleSort(int* a, int n)
{
  assert(a);
  for(size_t end = n; end > 0; --end)
  {
    int exchange = 0;
    for(size_t i = 1; i < end; ++i)
    {
      if(a[i-1] > a[i])
      {
        Swap(&a[i-1], &a[i]);
        exchange = 1);
      }
    }
  
    if(exchange == 0)
      break;
  }
}

 基本操作执行最好的情况是N次,最坏的情况是(N*(N+1)/2次,通过推导大O阶的方法+时间复杂度一般看最坏的情况,时间复杂度为O(N^2)

例六

//计算BinarySearch的时间复杂度
int BinarySearch(int* a, int n, int x)
{
  assert(a);

  int begin = 0;
  int end = n-1;
  while(begin <= end)    //begin和end是左闭右闭区间,所以这里有=号
  {
    int mid = begin + ((end-begin)>>1);
    if(a[mid] < x)
    {
      begin = mid + 1;
    }
    else if(a[mid] > x)
    {
      end = mid - 1;
    }
    else
    {
      return mid;
    }
  }

  return -1;
}

基本操作执行最好的情况是1一次拿下,最坏则是logN次,时间复杂度为O(logN) ps:logN在算法分析中表示的是底数为2,对数为N,有些地方会写成lgN。 

例七

//计算阶乘递归Fac的时间复杂度
long long Fac(size_t N)
{
  if(0 == N)
  {
    return -1;
  }

  return Fac(N-1) + Fib(N-2);
}

通过计算分析发现基本操作递归了N次,因此时间复杂度为O(N) 

例八

//计算斐波那契递归Fib的时间复杂度
long long Fib(size_t N)
{
  if(N < 3)
  {
    return 1;
  }

  return Fib(N-1) + Fib(N-2);
}

    //Fib(N) = 2^0 + 2^1 + 2^2 + ...... + 2^(N-1) = 2^N - 1

                                                           

通过计算分析发现基本操作递归了2^N次,因此时间复杂度为O(2^N) 

总结:递归算法计算时间复杂度,每次递归子函数消耗累加起来。

3 空间复杂度 

3.1 空间复杂度的概念

空间复杂度也是一个数学表达式,是对一个算法在运行过程中临时占用存储空间大小的量度

空间复杂度不是程序占用了多少bytes的空间,因为这个没多大意义,所以空间复杂度算的是变量的个数,空间复杂度计算规则基本跟时间复杂度类似,也使用了大O渐进表示法

注意:函数运行时所需要的栈空间(存储参数、局部变量、一些寄存器信息等)在编译期间已经确定好了,因此空间复杂度主要通过函数在运行时申请的额外空间来确定。

3.2 常见空间复杂度的计算案例

例一

//计算BubbleSort的空间复杂度
void BubbleSort(int* a, int n)
{
  assert(a);
  for(size_t end = n; end > 0; --end)
  {
    int exchange = 0;
    for(size_t i = 1; i < end; ++i)
    {
      if(a[i-1] > a[i])
      {
        Swap(&a[i-1], &a[i]);
        exchange = 1);
      }
    }
  
    if(exchange == 0)
      break;
  }
}

 使用了常数个额外的额空间,则空间复杂度为O(1)

例二

//计算Fibonacci的空间复杂度
//返回斐波那契数列的前n项
long long* Fibonacci(size_t n)
{
  if(n == 0)
  {
    return NULL;
  }

  long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
  fibArray[0] = 0;
  fibArray[1] = 1;
  for(int i = 2; i <= n; i++)
  {
    fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
  }

  return fibArray;
}

 动态开辟了n个空间,空间复杂度为O(N)

例三

//计算阶乘递归Fac的空间复杂度
long long Fac(size_t N)
{

  if(N == 0)
  {
    return 1;
  }

  return Fac(N - 1) * N;
}

递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间,故空间复杂度为O(N)  

4 常见复杂度对比

                             114514O(1)常数阶
                             7N + 8O(N)线性阶
                      4N^{2} + 5N + 6O(N^{2})平方阶
                          log_{2}N + 7O(logN)对数阶
                5N+ 4Nlog_{2}N +19O(NlogN)NlogN阶
                N^{3} + 5N^{2} + 6N + 13O(N^{3})立方阶
                                    2^{N}O(2^{N})指数阶
  • 20
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值