自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

考研小钻风

结合自己所学知识,用文章来展现,学习的同时也可以和大家分享,共同进步

  • 博客(57)
  • 收藏
  • 关注

原创 人工智能--搭建人工神经网络

本文详细讲解了人工神经网络的核心组成部分和关键技术。从神经元、感知器到多层感知器的演进,再到损失函数、梯度下降算法和反向传播算法的实际应用,读者可以全面理解神经网络的工作原理及其在实际问题中的应用。通过手工搭建神经网络的示例,读者不仅能够加深对神经网络内部运作的理解,还能够通过修改和扩展代码来探索更复杂的神经网络结构和任务。神经网络作为深度学习的基础,对于理解和实践现代机器学习技术具有重要意义。希望能给大家提供一些帮助!!!

2024-06-21 21:57:46 875 12

原创 人工智能中的监督学习和无监督学习

本文详细介绍了人工智能(AI)中监督学习和无监督学习的基本思想、具体过程,并通过四个复杂的代码实现案例对比了它们的区别。在监督学习中,我们通过使用已标注的数据集进行模型训练,目标是预测已知输出,如回归问题中的房价预测和分类问题中的图像分类。无监督学习则不使用标签数据,目标是从数据中发现潜在的模式或结构,如聚类中的客户分群和降维中的主成分分析(PCA)。通过对监督学习和无监督学习的详细讲解以及实际代码实现,我们了解到这两种方法在数据需求、目标、应用场景、算法复杂度和模型评估方面的不同。

2024-06-19 23:17:03 1292 10

原创 人工智能--自然语言处理NLP概述

NLP是一个跨学科领域,结合了计算机科学、语言学、数学和认知科学的知识,随着深度学习和大数据技术的发展,NLP的应用越来越广泛和深入。未来,随着技术的不断进步,NLP将在更多领域展现其潜力,推动人机交互的进一步发展。

2024-06-18 23:52:13 1535 15

原创 课设--学生成绩管理系统(核心代码部分)

【代码】课设--学生成绩管理系统(核心代码部分)

2024-06-17 22:43:25 1052 12

原创 课设--学生成绩管理系统(三)

目的是对学生成绩管理系统进行详细设计说明,以便用户及项目开发人员了解产品详细的设计与实现,为开发人员提供开发参考书。以下叙述将结合文字描述、伪代码,图表等来描述学生成绩管理系统的详细设计和相关的模块描述。本报告的预期读者有客户、项目经理、开发人员以及跟该项目相关的其他人员。

2024-06-16 23:22:34 1357 9

原创 算法与数据结构--决策树算法

决策树算法在数据科学和机器学习中具有重要地位,理解其原理和实现方法对解决实际问题具有重要意义。

2024-06-16 22:39:26 1281 3

原创 课设--学生成绩管理系统(二)

实现对学生成绩管理过程中的课程表管理、成绩查询、成绩详情、课程管理、用户管理、账号管理,站在纯手工解决这些问题存在的繁琐步骤和容错率,故设计了这个学生成绩管理系统大大加强日常成绩管理过程中的办事效率和数据管理。各模块的功能和接口详细设计,包括用户登录、课程信息的CRUD操作、课程表的管理、成绩的录入和查询。实现图书管理系统以下功能:用户登录、课程管理、课程表管理、成绩管理、用户管理、账号管理。功能需求:系统需要实现用户登录、课程管理、课程表管理、成绩管理、用户管理、账号管理等功能。

2024-06-15 23:21:38 5734 14

原创 课设--学生成绩管理系统(一)

为高校提供完整的学生成绩管理系统,节省学生成绩管理员以及教师和学生查询统计成绩所花的时间和精力。由于该项目是新提出的,正处于需求分析、可行性分析等的前期准备,项目 开发、运行和维护还待完成前期工作后进行。

2024-06-14 22:51:18 6046 7

原创 TF-IDF算法详解

TF-IDF是一种经典且常用的文本特征提取方法,能够有效地衡量词语在文档中的重要性。虽然它存在一定的局限性,但在许多实际应用中依然表现出色。通过合理地结合TF和IDF,TF-IDF能够帮助我们从大量文本数据中提取有价值的信息。无论是在搜索引擎、推荐系统还是文本分类中,TF-IDF都扮演着重要的角色。

2024-06-13 23:22:01 1295 1

原创 人工智能--制造业和农业

人工智能在制造业和农业中的应用显著提高了生产效率和管理水平,带来了显著的经济和社会效益。然而,这些技术在应用过程中也带来了一些安全隐患和挑战。为确保AI技术的安全可靠应用,企业和农民应综合考虑技术带来的便利和潜在风险,制定相应的安全措施和应急预案。

2024-06-12 23:49:02 1478 1

原创 人工智能强化学习:核心内容、社会影响及未来展望

人工智能强化学习:核心内容、社会影响及未来展望。

2024-06-11 23:54:31 1360 1

原创 人工智能在医学领域的应用及技术实现

随着技术的不断进步和应用场景的不断扩展,人工智能在医学领域的应用前景十分广阔,有望为医疗健康带来更多的创新和突破。利用训练好的模型实时监测病房情况,根据病人的病情严重程度和病房资源情况进行智能调度,提高病房资源的利用效率。:一些人工智能模型的决策过程不够透明,难以解释其判断的依据,这可能影响医生和患者对诊断结果的信任。:利用机器学习技术对患者的临床数据进行分析,可以预测潜在的健康风险,并采取预防措施进行干预。:医学数据涉及患者的隐私信息,人工智能在医学领域的应用可能会引发数据隐私和安全方面的担忧。

2024-06-10 23:26:55 1548 1

原创 人工智能和物联网如何结合

AI和IoT的结合是现代科技发展的重要趋势,二者的协同作用为各行各业带来了前所未有的机遇和挑战。通过不断创新和优化,AI和IoT将在更多领域实现智能化和自动化,提高效率,改善生活质量。

2024-06-09 20:51:19 1741 4

原创 人工智能在交通与物流领域的普及及应用

人工智能在交通与物流领域的普及及应用。

2024-06-08 22:57:56 1106 6

原创 人工智能--教育领域的运用

人工智能--教育领域的运用。

2024-06-08 22:12:42 1371 7

原创 人工智能--Foxmail邮箱使用方法

人工智能--Foxmail邮箱使用方法。

2024-06-07 13:30:11 1193 1

原创 Spark MLlib 机器学习详解

易于使用:提供了丰富的 API,支持 Scala、Java、Python 和 R 等多种编程语言。高度可扩展:可以处理海量数据,适用于大规模机器学习任务。丰富的算法库:支持分类、回归、聚类、降维、协同过滤等常用算法。本文详细介绍了 Spark MLlib 的功能及其应用,结合实例演示了分类、回归、聚类、降维、协同过滤等常用机器学习任务的实现过程。通过这些实例,我们可以看到 Spark MLlib 强大的数据处理和机器学习能力,非常适合大规模数据的处理与分析。

2024-06-06 23:03:20 1543 1

原创 程序员应该有什么职业素养?

综上所述,作为程序员,专业精神、沟通能力和团队合作意识,以及持续学习和不断进步的意识,都是非常重要的职业素养。这些素养不仅帮助我们在职业生涯中不断成长,也为团队和公司带来了更大的成功。在我的职业生涯中,这些素养一直指引着我的工作态度和价值观,帮助我不断突破自我,迎接新的挑战。希望通过我的分享,能够激励更多程序员在职业道路上不断追求卓越,实现自我价值。

2024-06-05 23:40:49 862 2

原创 人工智能--深度神经网络

人工智能(AI)是计算机科学的一个分支,旨在模拟或仿效人类智能。深度神经网(DNN)是AI的一个子领域,因其在图像识别、语音识别、自然语言处理等方面的卓越表现而备受瞩目。本文将详细探讨深度神经网络的基本概念、结构、训练过程、应用领域及其面临的挑战,并结合现实示例进行分析。希望这些能对刚学习算法的同学们提供些帮助哦!

2024-06-04 23:30:10 2025 3

原创 数据结构--字符串(详细分析)

字符串(String)是由字符组成的序列,在C语言中,字符串实际上是以\0结尾的字符数组。字符串操作在文本处理和用户输入处理中非常重要。

2024-06-03 23:14:29 1122 3

原创 数据结构--数组(详细分析)

数组作为一种固定大小且内存连续的线性数据结构,提供了高效的随机访问能力。

2024-06-02 23:17:16 884 1

原创 IDM优势

Free Download Manager(FDM)是一款免费且功能丰富的下载管理器。以下是IDM与FDM的详细对比:EagleGet是一款轻量级的下载管理器,其主要特点是免费和简洁。以下是IDM与EagleGet的详细对比:JDownloader是一款开源的下载管理器,支持多平台使用。以下是IDM与JDownloader的详细对比:假设用户需要下载一个10GB的操作系统镜像文件,在普通的浏览器下载方式下,可能需要数小时,并且一旦网络中断,可能需要重新开始。使用IDM,用户可以享受以下优势:假设用户需要下载

2024-06-02 19:47:13 1392 1

原创 Stable Diffusion详细教程

本教程详细介绍了Stable Diffusion的使用方法和步骤,并结合具体示例进行了展示。通过本教程的学习,读者将能够掌握Stable Diffusion的基本操作和应用技巧,并能够根据实际需求生成高质量的图像。希望本教程对读者有所帮助!

2024-06-01 23:33:23 1603 1

原创 Scikit-Learn 基础教程

Scikit-Learn 是一个开源的机器学习库,由 David Cournapeau 在 2007 年创建,并在 2010 年由 INRIA 进行发布。它以其简单易用、丰富的功能和良好的文档支持,成为了机器学习领域的重要工具。Scikit-Learn 提供了以下主要功能:数据预处理:包括特征提取、归一化和降维等。模型选择:支持多种分类、回归和聚类算法。模型评估:提供了丰富的模型评估指标和交叉验证方法。模型调优:支持网格搜索和随机搜索等超参数调优方法。模型持久化:支持模型的保存和加载。

2024-05-31 23:57:57 865 1

原创 DALL-E 2:突破性人工智能图像生成技术的全方位解析

DALL-E 2 的核心在于将文本描述与图像生成结合,通过一种名为 CLIP(Contrastive Language-Image Pre-training)的技术,将图像和文本映射到同一潜在空间。这种方法使得模型能够理解和生成与文本描述一致的图像。

2024-05-30 22:59:09 1111 1

原创 GPT-4o:新一代人工智能技术的全方位解析引言

GPT-4o 在实际应用中的表现显著提升,其优化后的特性使得它在以下几个领域展现出强大的优势:GPT-4o 在自然语言理解方面的能力有了显著提升,具体表现如下:在文本生成方面,GPT-4o 的表现更加出色,其主要能力包括:GPT-4o 进一步提升了多模态处理能力,能够实现文本、图像、音频等多种数据类型的综合处理。具体表现为:

2024-05-30 22:24:31 1152 1

原创 Visual Studio 的调试

Visual Studio 的调试。

2024-05-29 22:37:31 1841 1

原创 Visual Studio 的使用

Visual Studio 是由微软开发的一款集成开发环境(IDE),广泛用于各种编程语言的开发,包括但不限于 C#、C++、Python、JavaScript 等

2024-05-28 23:39:29 1542 2

原创 Windows操作系统基本知识整理

Windows操作系统由微软公司开发,是全球使用最广泛的操作系统之一。它的用户界面友好,功能强大,涵盖了从个人计算机到企业级服务器的各种应用。本文将详细介绍Windows操作系统的历史、版本、核心组件、使用技巧、维护与优化等各方面内容,帮助读者全面了解Windows系统。Windows操作系统凭借其丰富的功能和友好的用户界面,成为全球最受欢迎的操作系统之一。通过了解其发展历史、核心组件、使用技巧以及维护与优化方法,用户可以更好地。Windows内核是操作系统的核心,负责管理系统资源、硬件设备和软件应用。

2024-05-27 23:03:25 1442 2

原创 K-means聚类算法详细介绍

K-means聚类是一种常见且高效的无监督学习算法,用于将数据集分成K个簇(clusters)。本文将详细介绍K-means聚类的基本原理、算法步骤、优缺点以及应用场景。

2024-05-26 22:44:17 1547 3

原创 爬山算法的详细介绍

爬山算法解(旅行商问题)详细分析、代码实现。

2024-05-26 01:54:31 1508 1

原创 Linux操作指令大全

(print working directory)命令用于显示当前工作目录的完整路径。(change directory)命令用于切换当前工作目录。(disk usage)命令用于显示目录或文件的磁盘使用情况。(change owner)命令用于改变文件或目录的所有者。(change group)命令用于改变文件或目录的所属组。(change mode)命令用于改变文件或目录的权限。(move)命令用于移动或重命名文件或目录。(remove)命令用于删除文件或目录。命令用于列出指定目录下的文件和子目录。

2024-05-25 23:44:24 1102 4

原创 网络信息安全

网络信息安全(Cybersecurity)是指保护网络系统及其信息免受未经授权访问、使用、披露、破坏、修改或破坏的措施和方法。它的目标是确保信息的机密性、完整性和可用性。

2024-05-24 23:46:21 848 1

原创 开源大模型与闭源大模型:谁主沉浮?

开源大模型和闭源大模型在数据隐私、商业应用和社区参与三个方面各有优劣。在数据隐私方面,开源大模型提供了更高的透明度和数据控制权,而闭源大模型则通过专业支持简化了管理负担。在商业应用方面,开源大模型的灵活性和成本效益使其在特定领域具有优势,而闭源大模型的全面服务和品牌信任则更受市场欢迎。在社区参与方面,开源大模型依靠社区力量进行创新和改进,而闭源大模型则通过集中管理和资源保障,确保了高质量和稳定性。未来的发展趋势可能是两者的结合和互补。

2024-05-24 22:44:13 757 1

原创 线性回归模型详解

线性回归模型是统计学和机器学习中一种基本且重要的模型。它用于描述因变量和一个或多个自变量之间的线性关系。线性回归模型广泛应用于各种领域,如经济学、金融学、医学和工程学等。本文将详细介绍线性回归模型,包括其基本概念、数学原理、模型拟合方法、代码实现、模型评估及图形解析。通过具体案例和代码示例,使读者能够深入理解线性回归模型并在实际问题中应用。

2024-05-23 23:21:46 970 1

原创 人工智能的兴起与未来:从理论到应用

人工智能是研究和开发用于模拟、延伸和扩展人类智能的理论、方法、技术及应用系统的科学。根据其智能程度和应用范围,人工智能可分为弱人工智能(狭义人工智能)和强人工智能(广义人工智能)。弱人工智能:专注于特定任务的人工智能系统,如语音识别、图像处理和自动驾驶等。这类系统虽然在某些领域表现出色,但不具备真正的理解和通用智能。强人工智能:具有自主学习和推理能力的人工智能,能够在多种领域表现出类似人类的智能水平。这一领域目前尚处于理论研究阶段,实际应用尚未实现。

2024-05-22 22:56:30 956 2

原创 如何让大模型更聪明

数据增强通过对原始数据进行变换,生成新的训练样本,增加数据的多样性和数量。常见的数据增强方法包括图像旋转、翻转、裁剪,以及文本的同义词替换、噪声注入等。

2024-05-22 22:01:11 972 2

原创 数据结构——栈(详细分析)

栈的操作受限于后进先出(LIFO, Last In First Out)的原则,这种特点使得栈在处理特定类型的问题时非常高效。本文将详细解析栈的本质和特点,并通过生活中的例子和代码实现来深入理解栈的应用。栈是一种后进先出(LIFO)的数据结构,只能在栈顶进行操作,不适合需要随机访问数据的场景。栈内存的分配和释放是自动进行的,不需要手动管理内存,避免了内存泄漏和垃圾回收的问题。栈中的数据只能按照特定的顺序访问,缺乏灵活性,不能满足所有的数据操作需求。栈的大小通常是固定的,当数据量超过栈的容量时会导致栈溢出。

2024-05-21 23:18:35 1268 3

原创 代码和注释问题

这段代码看起来非常简单,但没有注释,我们无法知道每一步的具体意图和背景。加入注释后,这段代码的意图和逻辑变得清晰明了,其他开发者能够快速理解代码的功能和行为。:假设我们有一个处理用户数据的函数,该函数从数据库中获取用户信息,并进行一些处理。

2024-05-20 23:59:32 1020 5

原创 数据结构——线性表

线性表(List)是数据结构中的一种基本结构,是一组有序的数据元素的集合。线性表中的数据元素有且仅有一个前驱和一个后继(第一个元素没有前驱,最后一个元素没有后继)。线性表是实现其他数据结构(如堆栈、队列)的基础。顺序表(Sequential List)是一种线性表,其存储结构为一块连续的内存空间。顺序表通过数组来实现,数组中的每个位置都存储线性表的一个元素。链表(Linked List)是一种线性表,其存储结构为一组任意存储单元。链表中的每个元素称为结点(Node),每个结点包含数据域和指针域。

2024-05-20 23:41:00 1644 3

学生成绩管理系统.zip

提取的文件名似乎包含非标准字符,这可能是由于编码问题。让我们阅读该文件的内容以了解其内容。 我现在将尝试读取该文件并显示其内容。​​ 提取的项目似乎是一个目录。我将列出这个目录的内容,以便更好地了解它包含的内容。​​ 该目录包含两个子目录: StudentManagerSystemApi-理念 学生管理系统Vue 这些可能代表源代码的不同组件,可能是API的后端和学生管理系统的前端。让我们探究一下每个目录,以便更好地了解它们的内容。 首先,我将列出StudentManagerSystemApi-idea目录的内容。​​ StudentManagerSystemApi-idea目录包含以下文件和文件夹: .inidea:一个目录,可能包含IDE的项目配置文件(如IntelliJ idea)。 pom.xml:用于管理项目依赖关系的项目对象模型文件(在Maven项目中很常见)。 src:后端代码的源目录。 student_manager_system.sql:一个sql文件,可能包含系统的数据库架构或数据。 StudentManagerSystemApi-idea.iml:一个Intell

2024-06-17

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除