对称之美(双指针)
题解
1. 双指针
2. 用left标记左边的字符串,用right标记右边的字符,如果左边的字符串和右边的字符串出现相同的字符,left++,right–,直到两个字符串相遇或者是分离
3. 可以用二维的哈希表进行判断字符串中是否有相同的字符,x标记在第几个字符串,y标记26个字符,如果在左边和右边都出现标记为true
4. 细节处理:有多组测试用例,需要每次对vis进行数据清空,防止干扰下次的判断
代码
#include<iostream>
#include<string>
#include<cstring>
using namespace std;
int n,t;
bool vis[110][26];// 有100个字符串,每个字符串中有26个字符
bool check(int left,int right)
{
for(int i = 0;i < 26;i++)
{
if(vis[left][i] && vis[right][i]) return true;
}
return false;
}
int main()
{
cin >> t;
while(t--)
{
memset(vis,0,sizeof(vis));
cin >> n;
string s;
for(int i = 0;i < n;i++)
{
cin >> s;
for(auto ch : s)
{
vis[i][ch - 'a'] = true;
}
}
int left = 0,right = n - 1;
while(left < right)
{
if(!check(left,right)) break;
else
{
left++;
right--;
}
}
if(right > left) cout << "No" << '\n';
else cout << "Yes" << '\n';
}
return 0;
}
连续子数组最大和(线性dp)
题解
1. 以i位置为结尾的子数组的最大的和,可以是i位置本身,也可以是前面的最大和加上i位置的数
2. 细节处理:dp[0]映射为0,返回dp表里面子数组的最大和,如果dp[i-1] + arr[i] 和 arr[i] 表示dp[i] 中的最大值,如果dp[i-1] 小于0的话,那么最大值是arr[i],如果dp[i-1]大于0的话,那么最大值是dp[i-1] + arr[i]
3. 必须是连续的子数组,连续:可以从0位置或者中间其他位置开始向后
代码
#include <iostream>
using namespace std;
const int N = 2e5 + 10;
int a[N];
int dp[N];
int main()
{
int n;
cin >> n;
for(int i = 0;i < n;i++) cin >> a[i];
int ans = -110;
for(int i = 1;i <= n;i++)
{
// a[i-1] 保证映射关系的正确性
dp[i] = max(dp[i-1],0) + a[i-1];
// 子数组中的最大和
ans = max(dp[i],ans);
}
cout << ans << '\n';
return 0;
}
最长回文子序列(区间dp)
题解
1. 细节处理:初始化要[i+1][j],[i+1][j-1],[i,j-1]这三个点,i > j 的点都初始化为0,i = j的点都初始化为1
2. 填表顺序:从下往上,从左往右填,每次都要用到下面的和左边的数
代码
#include <iostream>
#include<string>
#include<vector>
using namespace std;
int main()
{
string s;
cin >> s;
int n = s.size();
vector<vector<int>> dp(n,vector<int>(n));
dp[0][0] = 1,dp[n-1][n-1] = 1;
for(int i = n-2;i >= 0;i--)
{
for(int j = i;j < n;j++)
{
if(i == j) dp[i][j] = 1;
else if(i > j) dp[i][j] = 0;
else if(i < j)
{
if(s[i] == s[j]) dp[i][j] = dp[i+1][j-1] + 2;
else dp[i][j] = max(dp[i+1][j],dp[i][j-1]);
}
}
}
cout << dp[0][n-1] << '\n';
return 0;
}