
kotori和气球
题解
1. 数学-排列组合
2. 每次乘完之后对109取模
代码
#include<iostream>
using namespace std;
int main()
{
int n,m;
cin >> n >> m;
int ans = n;
int k = m - 1;
while(k--)
{
ans *= (n-1);
// 每次乘完之后对109取模
ans %= 109;
}
cout << ans << '\n';
return 0;
}
走迷宫
题解
1. bfs其实都是一个模版
代码
#include <iostream>
#include<cstring>
#include<queue>
using namespace std;
int n,m;
int x1,y1,x2,y2;
const int N = 1010;
char arr[N][N];
int vis[N][N];// 既表示当前点的步数又表示当前点是否已经走过了
int dx[4] = {-1,1,0,0};
int dy[4] = {0,0,-1,1};
int bfs()
{
// 没有终点,终点是墙
if(arr[x2][y2] == '*') return -1;
// 没有走过的点初始都是-1
memset(vis,-1,sizeof(vis));
queue<pair<int,int>> q;
q.push({x1,y1});// 起点入队
vis[x1][y1] = 0;
while(q.size())
{
auto[a,b] = q.front();// 结构化绑定,把pair的first赋给a,second赋给b
q.pop();
for(int i = 0;i < 4;i++)
{
int x = a + dx[i],y = b + dy[i];
if(arr[x][y] == '.' && x >= 1 && x <= n && y >= 1 && y <= m &&
vis[x][y] == -1)
{
q.push({x,y});
vis[x][y] = vis[a][b] + 1;
// 如果已经搜到了返回这个点
if(x2 == x && y2 == y) return vis[x][y];
}
}
}
return -1;
}
int main()
{
cin >> n >> m;
cin >> x1 >> y1 >> x2 >> y2;
for(int i = 1;i <= n;i++)
{
for(int j = 1;j <= m;j++)
{
cin >> arr[i][j];
}
}
cout << bfs() << '\n';
return 0;
}
主持人调度(二)(难题)
题解
1. 优先级队列,小根堆+排序
2. 先把区间按照左端点排序,左端点排序后可以确保当前是该活动是最早开始的,如果不排序就有活动可能错误地加上主持人
3. 然后先把第一个端点加入堆中,从第二个点比较,第二个点的左端点如果比第一个点的右端点大就可以更新堆,把第二个点的右端点入堆,不需要加新的主持人,否则有重叠部分,第二个点的左端点跟最小的右端点比都小,就要新加入主持人,入堆
代码
class Solution
{
public:
int minmumNumberOfHost(int n, vector<vector<int>>& startEnd)
{
sort(startEnd.begin(),startEnd.end());
priority_queue<int,vector<int>,greater<int>> pq;// 小根堆
pq.push(startEnd[0][1]);
for(int i = 1;i < n;i++)
{
if(startEnd[i][0] >= pq.top())
{
pq.pop();
pq.push(startEnd[i][1]);
}
else
{
pq.push(startEnd[i][1]);
}
}
return pq.size();
}
};