7-207 孔融分梨(函数实现)

孔融没有兄弟姐妹,到了周末,就找堂兄孔明、堂姐孔茹、堂弟孔伟等7个堂兄妹来到家里玩。孔融妈妈买了8个梨给孩子们吃,结果小黄狗桐桐淘气叼走了一个,大花猫鑫鑫偷偷藏了一个。孔融抢过剩下的6个梨,妈妈止住他,说他要和大家平分吃。孔融不高兴,说8个人怎么分6个梨?妈妈说可以用分数解决这个问题。孔融学过分数,说把每个梨切8个相等的块,每个人拿6块就行了。妈妈说不用切那么多块,每个梨切4个相等的块,每个人拿3块正好。孔融糊涂了。孔明说,我来教你。于是孔明给孔融讲起了分数的化简。

分数化简要化简到最简形式,比如12/20可以化简成6/10和3/5,但3/5是最简形式;100/8可以化简成 50 /4和 25 /2 , 而25/2 为最简形式。为了降低难度,不要求将假分数(如7/2)化简成带分数(3 )形式。请编程帮助孔融将任意一个分数化简成最简形式。先从键盘输入两个整数m和n(1<=m,n<=10000) ,其中m表示分子,n表示分母。然后输出分数化简后的最简形式。

函数原型:int Gcd(int a, int b);

函数功能:计算a和b的最大公约数,输入数据超出有效范围时返回-1。

输入格式:

输入两个数,两数之间用逗号分隔。

输出格式:

输出对应的信息。

输入错误提示信息: "Input error!\n"

输出格式:"%d/%d\n"

输入样例:

在这里给出一组输入。例如:

78,32

输出样例:

在这里给出相应的输出。例如:

39/16

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB

栈限制

8192 KB

#include<stdio.h>
int Gcd(int m, int n);
int main()
{ 
	int n,m;
	scanf("%d,%d" ,&m,&n);
	int flag = Gcd(m,n);
	if(flag == -1)
	{
		printf( "Input error!\n");
	}
	else
	{
		printf("%d/%d\n",m/flag,n/flag);
	}
	return 0;
}
int Gcd(int m, int n)
{
	int i;
	if(n <= 10000 && n >= 1 && m <= 10000 && m >= 1)
	{
		for(i = m;i >= 1; i--)
		{
			if(m % i == 0 && n % i == 0)
				break;	
		}
		return i;
	}
	else
	{
		return -1;
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值