前言
提示:本文是YOLOv10训练自己数据集的记录教程,需要大家在本地已配置好CUDA,cuDNN等环境,没配置的小伙伴可以查看下载cuda和cudnn(11.8版本)_cudnn下载-CSDN博客
yolov10项目代码
代码地址:https://github.com/THU-MIG/yolov10
论文地址:https://arxiv.org/pdf/2405.14458
1.Anaconda和vscode安装
Anaconda是一个强大的开源数据科学平台,它将很多好的工具整合在一起,极大地简化了使用者的工作流程,并能够帮助使用者解决一系列数据科学难题。
有小伙伴纠结先安装python还是安装anaconda,这边的建议是装anaconda,就不需要单独装python了,因为anaconda自带python,且安装了anaconda之后,默认python版本是anaconda自带的python版本。
Anaconda下载地址
- 注:在Anaconda安装的过程中,比较容易出错的环节是环境变量的配置,所以大家在配置环境变量的时候,要细心一些。
首先 登录Anaconda官网。
- 进去是这样的,直接点击"Download"即可。(必须要是Windows环境且是64位)
安装详细步骤
- 双击下载好的安装包
- 点击 Next
- 点击 I Agree
- 选择 JUST Me
- 选择安装路经
- 查看内容,图方便勾选自动添加环境变量
- 点击Install,安装需要等待一会儿。
- 点击Next:
- 对于两个“learn”自行选择,打上之后会下载好自动打开annconda。
安装完毕
在电脑屏幕左下角的Windows徽标键这里,选择点击绿色圈圈Anaconda Navifator将其打开
出现此界面即为安装成功:
到这里,基本的安装和设置就好了。
安装VScode
VScode国内也有许多网站,但是大部分都是要money的,直接官网下载就好,有的说官网下载慢,也可以找国内镜像(虽然我是下载很快了)
官网下载链接: VSCode下载
这个就是下载页面,按自己系统下载,这里我只说Windows
同意协议
没啥好说的,同意–>下一步。
选择安装路径
考虑一下自己盘的内存,点击浏览选择自己设置的安装路径,另外路径中不要含有中文,然后点击下一步。
选择附加任务项
①将“通过code 打开“操作添加到windows资源管理器文件上下文菜单
②将“通过code 打开”操作添加到windows资源管理器目录上下文菜单
说明:①②勾选上,可以对文件,目录点击鼠标右键,选择使用 VScode 打开。
③将code注册为受支持的文件类型的编辑器
说明:默认使用 VScode 打开诸如 txt,py 等文本类型的文件,一般建议不勾选。
让 VScode 支持的代码文件全部变成 VScode 默认打开,文件图标也会随之更改,很好辨认。
④添加到PATH(重启后生效)
说明:这步骤默认的,勾选上,不用配置环境变量,可以直接使用。
至于创建桌面快捷方式看个人需求,选好点击下一步。
VSCode中文配置
对于有些更喜欢中文操作的
装一些python扩展等等也是在这个地方,方法类似
2.yolov10环境搭建
在配置好CUDA环境,并且获取到YOLOv10源码后,建议新建一个虚拟环境专门用于YOLOv10模型的训练。
conda create -n yolov10 python=3.9
加载创建的yolov10环境:
conda activate yolov10
进入后()会变成你环境名称 (判断是否安装成功)
将YOLOv10加载到环境后,安装剩余的包。requirements.txt 中包含了运行所需的包和版本,利用以下命令批量安装:
pip install -r requirements.txt #如果报错用另一个命令,换国内源安装
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
去除模型只读权限(如果说你要修改模型,必须pip install -e.,如果说只是复现,可加可不加)
pip install -e . #如果报错用另一个命令
pip install -e . -i https://pypi.tuna.tsinghua.edu.cn/simple
安装支持GPU的torch
这里我给大家上传到了百度网盘上:通过百度网盘分享的文件:torch_gpu.zip
链接:https://pan.baidu.com/s/13iN38yHQ_6c7-PFyGWXXJA?pwd=8q1x
提取码:8q1x
安装命令类似,这里我是将文件保存到D盘下:
pip install D:\torch_gpu\torch-2.3.1+cu118-cp39-cp39-win_amd64.whl
pip install D:\torch_gpu\torchaudio-2.3.1+cu118-cp39-cp39-win_amd64.whl
pip install D:\torch_gpu\torchvision-0.18.1+cu118-cp39-cp39-win_amd64.whl