自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(17)
  • 收藏
  • 关注

原创 长短期记忆网络LSTM

在LSTM的每个时间步里面,都有一个记忆cell,这个东西给予了LSTM选择记忆功能,使得LSTM有能力自由选择每个时间步里面记忆的内容。而LSTM设计了一个记忆细胞,具备选择记忆功能,可以选择记忆重要信息,过滤掉噪声信息,减轻记忆负担。RNN想把所有信息都记住,不管是有用的信息还是没用的信息,并且有梯度爆炸或者梯度消失的问题。更新门:选择性的提取有用的线性代数知识,然后结合高数保留下来的数学运算能力。遗忘门:遗忘高数积累的记忆。表示t-1时刻的记忆细胞。输出门:把没考的知识丢掉。

2025-01-25 12:58:17 1721

原创 隐马尔科夫模型HMM

状态随机,下一阶段的状态只与“当前有关”

2025-01-24 22:45:28 754

原创 Sklearn机器学习第十五天|机器学习算法原理

逻辑回归是解决分类问题!一般作为中间算法,处理数据上一节我们讲到,构造强学习器的所有个体学习器中,个体学习器可以是相同类型的也可以是不同类型的,对于相同类型的个体学习器,这样的集成是同质(homoganeous)的,例如决策树集成中全是决策树,神经网络集成中全是神经网络;对于不同类型的个体学习器,这样的集成是异质(hetergenous)的,例如某个集成中既含有决策树,又含有神经网络。

2025-01-22 03:29:33 1099

原创 Sklearn机器学习第十四天|机器学习基础、通过线性回归深入理解算法流程

第一部分 机器学习基础第二部分 通过线性回归深入理解算法流程第三部分 机器学习算法原理第四部分 细分构建机器学习应用程序的流程。

2025-01-21 20:59:17 1063

原创 YOLOv1、YOLOv2、YOLOv3目标检测算法原理与实战第十三天|YOLOv3实战、安装Typora

本课程用的是YOLOv3的9.6版本。

2025-01-19 23:20:14 1610

原创 YOLOv1、YOLOv2、YOLOv3目标检测算法原理与实战第十二天|YOLOv3理论

正例P:需要关注的类别反例N:初正例以外都为反例TP(True positives):实际为正例,且被分类器划分为正例的实例数;FP(False positives):实际为负例,但被分类器划分为正例的实例数;FN(False negatives):实际为正例,但被分类器划分为负例的实例数;TN(True negatives):实际为负例,但被分类器划分为负例的实例数;准确率:精确率(查准率):找的准不准召回率:找的全不全。

2025-01-17 21:09:44 691

原创 YOLOv1、YOLOv2、YOLOv3目标检测算法原理与实战第十一天|YOLOv2

YOLOv2(YOLO9000),预测更准确,速度更快,识别物体更多优点:1.缓解YOLOv1中定位不准确和检测召回率较低的问题缺点:1.小目标检测效果较差2.整体检测效果有待提高。

2025-01-17 01:43:08 1043

原创 YOLOv1、YOLOv2、YOLOv3目标检测算法原理与实战第十天|YOLOv1

优点:1.非常快,把物体检测定义为回归问题,网络也是卷积+池化+全连接的简单组件2.基于全图进行检测,不像滑动窗口和预选区技术(faster-RCNN)缺点:1.准确率不太高2.在定位物体,尤其是小物体上表现差(比如一个小方格里有三个物体,但是只有两个检测框,而且共用一个概率,就可能会有两个物体丢失)3.可以检测到的目标物体较少。

2025-01-15 20:51:05 861 1

原创 Pytorch框架与经典卷积神经网络与实战第九天|ResNet、佩戴口罩识别、稻米品种识别

残差网络的出现拜托了深度的束缚,大幅改善了深度神经网络中的模型退化的问题。

2025-01-14 20:19:17 700

原创 Pytorch框架与经典卷积神经网络与实战第八天|GoogLeNet、猫狗分类

网络虽然复杂,但是参数没有VGG多。

2025-01-13 22:59:19 647

原创 Pytorch框架与经典卷积神经网络与实战第七天|VGG

特点:1.深度更深(在ResNet出来后,这一点被反驳了),参数更多,效果更好2.小尺寸的卷积核使参数更少,而且效果也不比5*5的差参数数量计算公式为:参数数量=(卷积核大小*输入通道数+偏置项)*输出通道数3.块可以有效设计复杂网络。

2025-01-13 00:39:55 690

原创 Pytorch框架与经典卷积神经网络与实战第六天|LeNet、AlexNet2

绘图命令 plt.plot() 用于定义线条的样式,包括颜色、标记样式和线型。

2025-01-11 21:12:33 612

原创 Pytorch框架与经典卷积神经网络与实战第五天|LeNet、AlexNet1

AlexNet由八层组成,其中五个卷积层,三个全连接层,激活函数用的是ReLU,池化操作是最大池化。数据集采用的是Fashion_MINIST,一共有70000张数据,其中60000张用来训练,10000张用来测试,每张图都是28281的灰度图,最后分成10个类别。

2025-01-11 00:23:41 622

原创 Pytorch框架与经典卷积神经网络与实战第四天|PyTorch框架与编程环境安装

Python:一种跨平台的计算机程序语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,被用于独立的、大型项目的开发,多用于AI modelPyCharm:一种常用的Python IDE,有一整套帮助用户使用Python语言开发时提高效率的工具,比如调试、语法高亮、智能提示、版本控制等Anaconda:一个开源的Python和R语言的发行版本,用于计算科学(数据科学、机器学习、大数据处理和预测分析),可以简化软件包管理系统和部署。:PyTorch框架越来越流行。

2025-01-09 22:36:37 582

原创 Pytorch框架与经典卷积神经网络与实战第三天|CNN卷积神经网络算法原理2

如果直接用得到的预测值与真实值的差去计算平均误差,可能最后得到的平均误差刚好是0,与真实情况不符,所以引入了回归算法模型。卷积核的通道数跟输入特征图的通道数一定相同,最后输出特征图的通道数为1。步幅和填充操作,都可以控制输出图的大小。计算经过池化层后输出特征图的大小,计算公式与卷积层公式一样,其中FH为感受野。在有监督学习的条件下,每输入一个x,都会得到一个label,即真实值。同时,与卷积层不同的是,当输入特征图为三通道时,输出特征图也为三通道。但如果卷积核的数量有FN个,则输出特征图也有FN个通道。

2025-01-08 21:13:05 1050

原创 Pytorch框架与经典卷积神经网络与实战第二天|CNN卷积神经网络算法原理1

函数值域在(0,1),导函数值域在(0,0.25)在做分类的时候,很可能做输出层的激活函数,如果99%的可能是狗。可能用的比较多的函数,是一个分段函数。如果函数是对称的,可以提供一致的预测关系,但是这个函数不对称,所以无法提供一致的预测关系。导数往两边走,导数值越接近于0(梯度消失),一般希望导数比较平稳,不要大也不要小,不然w和b不能更新。激活函数一般是非线性的,但也有线性的。前一层的输出是后一层的输入,通过调整w和b,使结果趋近正确值。函数值域在(-1,1),导函数值域在(0,1)。

2025-01-08 01:06:58 591

原创 Pytorch框架与经典卷积神经网络与实战第一天|安装PyCharm&Anaconda,配置环境,写爱心代码

显示no conda executable found可以先在“path to conda”里随便选一个****.bat,然后再切换回conda.bat。conda env list 或者 conda info -e:查看当前存在哪些虚拟环境。conda uninstall package_name(包名): 卸载安装包。conda update conda:检查更新当前的conda版本。conda --version:查看已经安装了的pip版本。conda list :查看当前已经安装好了包及版本。

2025-01-08 00:45:03 1195 2

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除