python-大数据分析-基于大数据的QQ音乐数据分析系统设计与实现

本文探讨了如何使用Python进行QQ音乐数据的爬取、分析和可视化,通过pandas处理数据,MySQL存储,Flask进行展示。研究旨在利用Python技术揭示音乐市场趋势和用户偏好,为音乐产业提供参考。系统设计包括网络爬虫、数据库设计、Echarts图表展示和Flask web界面实现,旨在提高音乐平台的用户体验和数据分析效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设计说明

国内外数字音乐市场经过几百年的发展, 收录的音乐作品总数量已经达到了相当可观的程度, 面对数量如此庞大的音乐作品, 如何更加便捷、高效的让用户听到喜欢的音乐作品, 是音乐平台必须要考虑的事情, 也是科研人员非常感兴趣的研究课题。
本文首先对数据分析中涉及到了技术进行分析,通过爬取QQ音乐数据,然后使用Python中的pandas库对数据进行分析,最后通过flask进行可视化展示。具体功能包括使用Python进行音乐数据的爬取,并将音乐数据存储在MySQL数据库中,最后利用Flask框架在web页面中对音乐数据分析结果进行展示。

关键词:数据分析;Python;网络爬虫

DESIGN DESCRIPTION

After hundreds of years of development of digital music market at home and abroad, the total number of music works collected has reached a considerable degree. Faced with such a large number of music works, how to let users hear their favorite music works more conveniently and efficiently is a matter that music platforms must consider, and also a research topic that researchers are very interested in.
In this paper, data analysis involves techniques first. By climbing QQ music data, pandas library is used to analyze the data, and finally visual display is performed by flask. The specific functions include using Python to crawl music data, storing music data in MySQL database, and finally using Flask framework to display the analysis results of music data in a web page.
Key words: Data analysis; Python; Web crawler

目 录
1 选题背景分析
1.1研究的背景与目的意义
1.1.1 研究背景
1.1.2 研究目的及意义
1.2 国内外发展现状
1.3 研究方案
2 设计技术方案
2.1 网络爬虫技术
2.2 MySQL
2.3 Echarts
2.4 Flask
3 系统分析
3.1 可行性分析
3.1.1 技术可行性
3.1.2 经济可行性
3.2 业务需求分析
3.3 非功能性需求
4 系统设计
4.1 数据爬虫设计
4.2 数据分析设计
4.3 数据可视化流程
5 系统实现
5.1 界面实现
5.2 代码实现
参考文献

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值