2024年最全微众Fate-横向联邦学习-预测

点击"view the job" 查看具体情况

先看这个图,这个图我们无法得知各个组件之间的输入输出关系。

在这里插入图片描述

因此我们还是需要看他的dsl,继续##1的查询命令

python fate_flow/fate_flow_client.py -f job_config -j 202002290746181106925 -r guest -p 10000 -o examples/federatedml-1.x-examples/homo_logistic_regression

查看输出目录的dsl.json,找到对应配置如下:

{

“components”: {

“dataio_0”: {

“CodePath”: “federatedml/util/data_io.py/DataIO”,

“input”: {

“data”: {

“data”: [

“args.eval_data”

]

},

“model”: [

“pipeline.dataio_0.dataio”

]

},

“module”: “DataIO”,

“output”: {

“data”: [

“train”

]

}

},

“dataio_1”: {

“CodePath”: “federatedml/util/data_io.py/DataIO”,

“input”: {

“data”: {

“data”: [

“args.eval_data”

]

}

},

“module”: “DataIO”,

“output”: {

“data”: [

“eval_data”

]

}

},

“homo_lr_0”: {

“CodePath”: “federatedml/linear_model/logistic_regression/homo_logsitic_regression/homo_lr_guest.py/HomoLRGuest”,

“input”: {

“data”: {

“eval_data”: [

“dataio_0.train”

]

},

“model”: [

“pipeline.homo_lr_0.homolr”

]

},

“module”: “HomoLR”,

“output”: {

“data”: [

“train”

]

}

},

“homo_lr_1”: {

“CodePath”: “federatedml/linear_model/logistic_regression/homo_logsitic_regression/homo_lr_guest.py/HomoLRGuest”,

“input”: {

“data”: {

“eval_data”: [

“dataio_1.eval_data”

]

},

“model”: [

“pipeline.homo_lr_1.homolr”

]

},

“module”: “HomoLR”,

“output”: {

“data”: [

“predict”

]

}

}

}

}

查看data_output,对别label与predict_result

在这里插入图片描述

  1. 获取所有预测结果

Fate_board默认查看100条,我们想要获取全部数据可以通过命令行实现。

模板命令如下:

python ${your_fate_install_path}/fate_flow/fate_flow_client.py -f component_output_data -j ${job_id} -p ${party_id} -r ${role} -cpn ${component_name} -o ${predict_result_output_dir}

${job_id}: 预测任务ID

${party_id}: 用户partyID

${role}: 角色

${component_name}: 获取预测结果的组件

${predict_result_output_dir}: 输出目录

5.1 获取guest所有预测结果


控制台输入以下命令:

homo_lr_0预测结果:

python fate_flow/fate_flow_client.py -f component_output_data -j 202002290746181106925 -p 10000 -r guest -cpn homo_lr_0 -o examples/federatedml-1.x-examples/homo_logistic_regression/predict

homo_lr_1预测结果:

python fate_flow/fate_flow_client.py -f component_output_data -j 202002290746181106925 -p 10000 -r guest -cpn homo_lr_1 -o examples/federatedml-1.x-examples/homo_logistic_regression/predict

控制台输出:

在这里插入图片描述

进入目录可以看到两个文件

在这里插入图片描述

output_data.csv:输出csv的数据:

在这里插入图片描述

output_data_meta.json:输出数据的表头字段

在这里插入图片描述

5.2 获取host所有预测结果


host的操作只需要修改role跟相对的partyid即可

最后

Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习 Python 门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的 Python 学习资料,给那些想学习 Python 的小伙伴们一点帮助!

👉Python所有方向的学习路线👈

Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照上面的知识点去找对应的学习资源,保证自己学得较为全面。

👉Python必备开发工具👈

工欲善其事必先利其器。学习Python常用的开发软件都在这里了,给大家节省了很多时间。

👉Python全套学习视频👈

我们在看视频学习的时候,不能光动眼动脑不动手,比较科学的学习方法是在理解之后运用它们,这时候练手项目就很适合了。

👉实战案例👈

学python就与学数学一样,是不能只看书不做题的,直接看步骤和答案会让人误以为自己全都掌握了,但是碰到生题的时候还是会一筹莫展。

因此在学习python的过程中一定要记得多动手写代码,教程只需要看一两遍即可。

👉大厂面试真题👈

我们学习Python必然是为了找到高薪的工作,下面这些面试题是来自阿里、腾讯、字节等一线互联网大厂最新的面试资料,并且有阿里大佬给出了权威的解答,刷完这一套面试资料相信大家都能找到满意的工作。

需要这份系统化学习资料的朋友,可以戳这里无偿获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值