过几天参加省内大学生数学竞赛(非数学组),硬着头皮重拾高数
(后注:考试之前没整完,寒假再整)
本篇为复习随笔,主要目的是理清复习思路,只列基础大纲,可供同学们参考
注:
1.以下知识点主要来源于天津大学数学系自主编纂的《高等数学(上、下)》教材,以同济大学高数教材为辅助,并做总结整理;
2.标注★代表重难知识点,标注*代表需要理解但很少考到的知识点;
3.本博客是我的第一篇博客,纪念一下,如有细节知识点缺失或内容错误非常抱歉
高中储备知识:
极坐标系
和差化积与积化和差
导数定义、常用导数公式、驻点和拐点
空间立体几何基础知识
数列基础知识
高数(上):
一、函数与极限
①*收敛数列的性质:
极限的唯一性、有界性、保号性、四则运算法则、★保序性、任意子数列收敛且极限相同
②*极限的性质:
唯一性、局部有界性、★局部保号性、四则运算法则、线性性质
③间断点及其分类:
第一类可去间断点、第一类跳跃间断点
第二类无穷间断点、第二类振荡间断点
④闭区间上连续函数的性质:
最大值最小值定理、★有界性定理、零值点定理、介值定理、一致连续性
⑤★两个重要极限
⑥★无穷小量
二、导数与微分
①求导法则:
四则运算、反函数、复合函数(链式法则)、高阶函数(★莱布尼兹公式)、★隐函数(化为显函数、两边同时求导、对数求导法)、★参变量函数
②一元函数的性质:
单调性、极值(定义、必要条件、第一充分条件、第二充分条件)和最值
*凹凸性、拐点(嫌疑点:二阶导为0或不存在、第一充分条件、第二充分条件)、渐近线
③多元函数的性质:
概念、极限、连续性、有界性、最值定理、介值定理、★偏导数
④微分的概念、运算法则、全微分、可微
⑤微分中值定理:
费马定理
★罗尔中值定理
★拉格朗日中值定理
柯西中值定理
洛必达法则
★泰勒展开和泰勒中值定理
⑥多元函数微分法:
★复合函数的链式求导法则、*全微分形式的不变性
★隐函数定理及其两种微分法(偏导法、定理法)、*由方程组确定的隐函数的微分法
⑦★方向导数、★梯度
⑧微分方程:
一阶微分方程:
可分离变量方程
★齐次方程(引入u=x/y,化为可分离变量方程)及非齐次齐次化方法
★一阶线性微分方程(常数变易法)
★伯努利方程(引入z=y^(1-n),化为关于z的一阶线性方程)
可降阶高阶方程:
y^(n)=f(x)型
★y''=f(x,y')型(或F(x,y',y'')=0型)作变量代换y'=p(x)
y''=f(y,y')型(或F(y,y',y'')=0型【不显含x但x为自变量】)作变量代换y'=p(y)
常系数线性微分方程:齐次、非齐次、*欧拉方程
三、向量代数与空间解析几何
①数量积、向量积、混合积
②平面:
1.方程:
一点一线确定一个平面->★点法式
三点确定一个平面->三点式:★一般式(直接带入三点)、★截距式(特殊的一般式)、混合式(先叉乘得法向量,再点乘得点法式)
2.平面的夹角
3.点到平面的距离
③直线:
1.方程:
两平面相交得一条直线->面交式
一点一向量确定一条直线->★点向式/对称式
2.两直线位置关系
3.直线与平面位置关系
4.★平面束
④曲面:
1.方程:
一般式/隐式:F(x,y,z)=0
显式:z=f(x,y)
参数式:
x=x(u,v)
y=y(u,v)
z=z(u,v)
2.常见曲面:
柱面:空间曲线少一个量
★椭球面:x^2/a^2+y^2/b^2+z^2/c^2=1
★圆锥面:常数为0,xyz系数中有一负数且另外两个相等
★椭圆锥面:常数为0,xyz系数有一负数
双曲面:★单叶:xyz系数中有一负数;双叶:xyz系数中有两负数
抛物面:xyz存在一个一次项;★椭圆抛物面:另外两个同号;双曲抛物面/马鞍面:另外两个异号
3.★空间曲面的切平面和法线
⑤空间曲线:
1.方程:
两个曲面相交->面交式(一般式)
参数式
2.投影曲线:消去一个量得投影柱面方程,联立此量=0
3.★空间曲线的切线和法平面
高数(下):
一、不定积分与定积分
①不定积分:
常见不定积分公式
★换元积分法:第一换元法、第二换元法
★分部积分法
★有理函数的积分(4种形式)
②定积分
1.概念、*定义法求定积分(定积分转化为极限)、*极限化为定积分
2.性质:
线性性、保号性、估值定理、相乘仍具有可积性、有限个相差点、区间可加性
★积分中值定理
★牛顿-莱布尼茨公式
原函数存在定理(微积分学基本定理)
★换元积分法
★分部积分法
3.应用:
(1)★平面曲线:极坐标、弧长、曲率
(2)★平面图形的面积
(3)★平行截面面积已知的立体体积
(4)*旋转曲面的面积
(5)*平均值定理:以直代曲
③反常积分
④*Γ(gamma)积分
二、重积分
①二重积分
1.性质:
估值定理、中值定理等(与定积分类似)
2.计算:X型区域、Y型区域、交换积分次序
②三重积分
变量代换定理、★柱坐标代换、★球坐标代换
③应用:
(1)曲面面积-二重积分
(2)质心
(3)转动惯量
(4)引力-三重积分
三、曲线积分与曲面积分
①曲线积分
第一类曲线积分
第二类曲线积分
两者联系:dr=Tds
★格林公式
★斯托克斯公式:针对第二类曲面积分
*环量与旋度
②曲面积分
第一类曲面积分
第二类曲面积分
两者联系
★高斯公式
★散度(一个数而非向量)
四、级数
①绝对收敛、相对收敛、发散
②数项级数
敛散性判别法:
(1)正项级数:
基本定理:收敛<=>部分和有上界
比较判别法及其极限形式
★比值判别法(达朗贝尔判别法)
根值判别法(柯西判别法)
积分判别法
(2) 一般项级数:
交错级数:★莱布尼茨定理
阿贝尔判别法
*迪利克雷判别法
③函数项级数:
(1)幂级数
★收敛半径和收敛域、阿贝尔定理
★求和函数、幂级数展开
(2)★傅里叶级数:正弦级数、余弦级数、周期为2l的傅里叶级数
由于年后有新的任务,赶在年前写完,后几章有些精简,以后再复习的时候回来补充
新年快乐鸭
2025.1.27