【数学基础】高数篇 知识点大纲

过几天参加省内大学生数学竞赛(非数学组),硬着头皮重拾高数

(后注:考试之前没整完,寒假再整)

本篇为复习随笔,主要目的是理清复习思路,只列基础大纲,可供同学们参考

注:

1.以下知识点主要来源于天津大学数学系自主编纂的《高等数学(上、下)》教材,以同济大学高数教材为辅助,并做总结整理;

2.标注★代表重难知识点,标注*代表需要理解但很少考到的知识点;

3.本博客是我的第一篇博客,纪念一下,如有细节知识点缺失或内容错误非常抱歉

高中储备知识:

极坐标系

和差化积与积化和差

导数定义、常用导数公式、驻点和拐点

空间立体几何基础知识

数列基础知识

高数(上):

一、函数与极限

*收敛数列的性质:

极限的唯一性、有界性、保号性、四则运算法则、★保序性、任意子数列收敛且极限相同

*极限的性质:

唯一性、局部有界性、★局部保号性、四则运算法则、线性性质

③间断点及其分类:

第一类可去间断点、第一类跳跃间断点

第二类无穷间断点、第二类振荡间断点

④闭区间上连续函数的性质:

最大值最小值定理、★有界性定理、零值点定理、介值定理、一致连续性

⑤★两个重要极限

⑥★无穷小量

二、导数与微分

①求导法则:

四则运算、反函数、复合函数(链式法则)、高阶函数(★莱布尼兹公式)、★隐函数(化为显函数、两边同时求导、对数求导法)、★参变量函数

②一元函数的性质:

单调性、极值(定义、必要条件、第一充分条件、第二充分条件)和最值

*凹凸性、拐点(嫌疑点:二阶导为0或不存在、第一充分条件、第二充分条件)、渐近线

③多元函数的性质:

概念、极限、连续性、有界性、最值定理、介值定理、★偏导数

④微分的概念、运算法则、全微分、可微

⑤微分中值定理:

费马定理

★罗尔中值定理

★拉格朗日中值定理

柯西中值定理

洛必达法则

★泰勒展开和泰勒中值定理

⑥多元函数微分法:

★复合函数的链式求导法则、*全微分形式的不变性

★隐函数定理及其两种微分法(偏导法、定理法)、*由方程组确定的隐函数的微分法

⑦★方向导数、★梯度

⑧微分方程:

一阶微分方程:

       可分离变量方程

    ★齐次方程(引入u=x/y,化为可分离变量方程)及非齐次齐次化方法

    ★一阶线性微分方程(常数变易法)

    ★伯努利方程(引入z=y^(1-n),化为关于z的一阶线性方程)

可降阶高阶方程:

       y^(n)=f(x)型

    ★y''=f(x,y')型(或F(x,y',y'')=0型)作变量代换y'=p(x)

       y''=f(y,y')型(或F(y,y',y'')=0型【不显含x但x为自变量】)作变量代换y'=p(y)

常系数线性微分方程:齐次、非齐次、*欧拉方程

三、向量代数与空间解析几何

①数量积、向量积、混合积

②平面:

1.方程:

一点一线确定一个平面->★点法式

三点确定一个平面->三点式:★一般式(直接带入三点)、★截距式(特殊的一般式)、混合式(先叉乘得法向量,再点乘得点法式)

2.平面的夹角

3.点到平面的距离

③直线:

1.方程:

两平面相交得一条直线->面交式

一点一向量确定一条直线->★点向式/对称式

2.两直线位置关系

3.直线与平面位置关系

4.★平面束

④曲面:

1.方程:

一般式/隐式:F(x,y,z)=0

显式:z=f(x,y)

参数式:

x=x(u,v)

y=y(u,v)

z=z(u,v)

2.常见曲面:

柱面:空间曲线少一个量

★椭球面:x^2/a^2+y^2/b^2+z^2/c^2=1

★圆锥面:常数为0,xyz系数中有一负数且另外两个相等

★椭圆锥面:常数为0,xyz系数有一负数

双曲面:★单叶:xyz系数中有一负数;双叶:xyz系数中有两负数

抛物面:xyz存在一个一次项;★椭圆抛物面:另外两个同号;双曲抛物面/马鞍面:另外两个异号

3.★空间曲面的切平面和法线

⑤空间曲线:

1.方程:

两个曲面相交->面交式(一般式)

参数式

2.投影曲线:消去一个量得投影柱面方程,联立此量=0

3.★空间曲线的切线和法平面

高数(下):

一、不定积分与定积分

①不定积分:

常见不定积分公式

★换元积分法:第一换元法、第二换元法

★分部积分法

★有理函数的积分(4种形式)

②定积分

1.概念、*定义法求定积分(定积分转化为极限)、*极限化为定积分

2.性质:

线性性、保号性、估值定理、相乘仍具有可积性、有限个相差点、区间可加性

★积分中值定理

★牛顿-莱布尼茨公式

原函数存在定理(微积分学基本定理)

★换元积分法

★分部积分法

3.应用:

(1)★平面曲线:极坐标、弧长、曲率

(2)★平面图形的面积

(3)★平行截面面积已知的立体体积

(4)*旋转曲面的面积

(5)*平均值定理:以直代曲

③反常积分

④*Γ(gamma)积分

二、重积分

①二重积分

1.性质:

估值定理、中值定理等(与定积分类似)

2.计算:X型区域、Y型区域、交换积分次序

②三重积分

变量代换定理、★柱坐标代换、★球坐标代换

③应用:

(1)曲面面积-二重积分

(2)质心

(3)转动惯量

(4)引力-三重积分

三、曲线积分与曲面积分

①曲线积分

第一类曲线积分

第二类曲线积分

两者联系:dr=Tds

★格林公式

★斯托克斯公式:针对第二类曲面积分

*环量与旋度

②曲面积分

第一类曲面积分

第二类曲面积分

两者联系

★高斯公式

★散度(一个数而非向量)

四、级数

①绝对收敛、相对收敛、发散

②数项级数

敛散性判别法:

(1)正项级数:

        基本定理:收敛<=>部分和有上界

        比较判别法及其极限形式

        ★比值判别法(达朗贝尔判别法)

        根值判别法(柯西判别法)

        积分判别法

(2) 一般项级数:

        交错级数:★莱布尼茨定理

        阿贝尔判别法

        *迪利克雷判别法

③函数项级数:

(1)幂级数

★收敛半径和收敛域、阿贝尔定理

★求和函数、幂级数展开

(2)★傅里叶级数:正弦级数、余弦级数、周期为2l的傅里叶级数

由于年后有新的任务,赶在年前写完,后几章有些精简,以后再复习的时候回来补充

新年快乐鸭

2025.1.27

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值