【数学基础】高数篇 知识点大纲

过几天参加省内大学生数学竞赛(非数学组),硬着头皮重拾高数

(后注:考试之前没整完,寒假再整)

本篇为复习随笔,主要目的是理清复习思路,只列基础大纲,可供同学们参考

注:

1.以下知识点主要来源于天津大学数学系自主编纂的《高等数学(上、下)》教材,以同济大学高数教材为辅助,并做总结整理;

2.标注★代表重难知识点,标注*代表需要理解但很少考到的知识点;

3.本博客是我的第一篇博客,纪念一下,如有细节知识点缺失或内容错误非常抱歉

高中储备知识:

极坐标系

和差化积与积化和差

导数定义、常用导数公式、驻点和拐点

空间立体几何基础知识

数列基础知识

高数(上):

一、函数与极限

*收敛数列的性质:

极限的唯一性、有界性、保号性、四则运算法则、★保序性、任意子数列收敛且极限相同

*极限的性质:

唯一性、局部有界性、★局部保号性、四则运算法则、线性性质

③间断点及其分类:

第一类可去间断点、第一类跳跃间断点

第二类无穷间断点、第二类振荡间断点

④闭区间上连续函数的性质:

最大值最小值定理、★有界性定理、零值点定理、介值定理、一致连续性

⑤★两个重要极限

⑥★无穷小量

二、导数与微分

①求导法则:

四则运算、反函数、复合函数(链式法则)、高阶函数(★莱布尼兹公式)、★隐函数(化为显函数、两边同时求导、对数求导法)、★参变量函数

②一元函数的性质:

单调性、极值(定义、必要条件、第一充分条件、第二充分条件)和最值

*凹凸性、拐点(嫌疑点:二阶导为0或不存在、第一充分条件、第二充分条件)、渐近线

③多元函数的性质:

概念、极限、连续性、有界性、最值定理、介值定理、★偏导数

④微分的概念、运算法则、全微分、可微

⑤微分中值定理:

费马定理

★罗尔中值定理

★拉格朗日中值定理

柯西中值定理

洛必达法则

★泰勒展开和泰勒中值定理

⑥多元函数微分法:

★复合函数的链式求导法则、*全微分形式的不变性

★隐函数定理及其两种微分法(偏导法、定理法)、*由方程组确定的隐函数的微分法

⑦★方向导数、★梯度

⑧微分方程:

一阶微分方程:

       可分离变量方程

    ★齐次方程(引入u=x/y,化为可分离变量方程)及非齐次齐次化方法

    ★一阶线性微分方程(常数变易法)

    ★伯努利方程(引入z=y^(1-n),化为关于z的一阶线性方程)

可降阶高阶方程:

       y^(n)=f(x)型

    ★y''=f(x,y')型(或F(x,y',y'')=0型)作变量代换y'=p(x)

       y''=f(y,y')型(或F(y,y',y'')=0型【不显含x但x为自变量】)作变量代换y'=p(y)

常系数线性微分方程:齐次、非齐次、*欧拉方程

三、向量代数与空间解析几何

①数量积、向量积、混合积

②平面:

1.方程:

一点一线确定一个平面->★点法式

三点确定一个平面->三点式:★一般式(直接带入三点)、★截距式(特殊的一般式)、混合式(先叉乘得法向量,再点乘得点法式)

2.平面的夹角

3.点到平面的距离

③直线:

1.方程:

两平面相交得一条直线->面交式

一点一向量确定一条直线->★点向式/对称式

2.两直线位置关系

3.直线与平面位置关系

4.★平面束

④曲面:

1.方程:

一般式/隐式:F(x,y,z)=0

显式:z=f(x,y)

参数式:

x=x(u,v)

y=y(u,v)

z=z(u,v)

2.常见曲面:

柱面:空间曲线少一个量

★椭球面:x^2/a^2+y^2/b^2+z^2/c^2=1

★圆锥面:常数为0,xyz系数中有一负数且另外两个相等

★椭圆锥面:常数为0,xyz系数有一负数

双曲面:★单叶:xyz系数中有一负数;双叶:xyz系数中有两负数

抛物面:xyz存在一个一次项;★椭圆抛物面:另外两个同号;双曲抛物面/马鞍面:另外两个异号

3.★空间曲面的切平面和法线

⑤空间曲线:

1.方程:

两个曲面相交->面交式(一般式)

参数式

2.投影曲线:消去一个量得投影柱面方程,联立此量=0

3.★空间曲线的切线和法平面

高数(下):

一、不定积分与定积分

①不定积分:

常见不定积分公式

★换元积分法:第一换元法、第二换元法

★分部积分法

★有理函数的积分(4种形式)

②定积分

1.概念、*定义法求定积分(定积分转化为极限)、*极限化为定积分

2.性质:

线性性、保号性、估值定理、相乘仍具有可积性、有限个相差点、区间可加性

★积分中值定理

★牛顿-莱布尼茨公式

原函数存在定理(微积分学基本定理)

★换元积分法

★分部积分法

3.应用:

(1)★平面曲线:极坐标、弧长、曲率

(2)★平面图形的面积

(3)★平行截面面积已知的立体体积

(4)*旋转曲面的面积

(5)*平均值定理:以直代曲

③反常积分

④*Γ(gamma)积分

二、重积分

①二重积分

1.性质:

估值定理、中值定理等(与定积分类似)

2.计算:X型区域、Y型区域、交换积分次序

②三重积分

变量代换定理、★柱坐标代换、★球坐标代换

③应用:

(1)曲面面积-二重积分

(2)质心

(3)转动惯量

(4)引力-三重积分

三、曲线积分与曲面积分

①曲线积分

第一类曲线积分

第二类曲线积分

两者联系:dr=Tds

★格林公式

★斯托克斯公式:针对第二类曲面积分

*环量与旋度

②曲面积分

第一类曲面积分

第二类曲面积分

两者联系

★高斯公式

★散度(一个数而非向量)

四、级数

①绝对收敛、相对收敛、发散

②数项级数

敛散性判别法:

(1)正项级数:

        基本定理:收敛<=>部分和有上界

        比较判别法及其极限形式

        ★比值判别法(达朗贝尔判别法)

        根值判别法(柯西判别法)

        积分判别法

(2) 一般项级数:

        交错级数:★莱布尼茨定理

        阿贝尔判别法

        *迪利克雷判别法

③函数项级数:

(1)幂级数

★收敛半径和收敛域、阿贝尔定理

★求和函数、幂级数展开

(2)★傅里叶级数:正弦级数、余弦级数、周期为2l的傅里叶级数

由于年后有新的任务,赶在年前写完,后几章有些精简,以后再复习的时候回来补充

新年快乐鸭

2025.1.27

1、指数名称:北京大学数字普惠金融指数 2、课题组:本指数北京大学数字金融研究中心蚂蚁科技集团研究院组成的联合课题组负责编制,课题组顾问包括北京大学数字金融研究中心主任黄益平,蚂蚁集团研究院院长李振华。第一期指数2011-2015)课题组成员主要包括:郭峰、孔涛、王靖一、张勋、程志云、阮方圆、孙涛、王芳。第二期到第六期指数(2016-2023)课题组成员主要包括:郭峰、王靖一、程志云、李勇国、王芳。课题组也获得了北京大学蚂蚁集团多位同事的技术支持。 3、指数属性:这套指数包括数字普惠金融指数,以及数字金融覆盖广度数字金融使用深度以及普惠金融数字化程度;此外使用深度指数中还包含支付、信贷、保险、信用、投资、货币基金等业务分类指数;但由于监管公司数据安全审核等方面的原因,2019-2023的信用货币基金分指数,没有对外公布。 4、指数范围:中国内地31个省(直辖市、自治区,简称“省”)、337个地级以上城市(地区、自治州、盟等,简称“城市”),以及约2800个县(县级市、旗、市辖区等,简称“县域”);部分地区数据存在缺失;港澳台地区数据暂未包括。 5、时间跨度:省级城市级指数时间跨度为2011-2023,县域指数时间跨度为2014-2023。 6、地区代码说明:在2011-2023期间,中国部分地区进行了“撤地设市”“县(市)改区”等改革,调整了地区名称行政区划代码,但并不影响本指数统计;本表中城市代码同时保留了20142018两个版本,县域名称行政区划代码则以2014底的代码为准,以方便使用者合并其他经济社会数据进行分析。 7、引用说明:欢迎各界人士使用指数,如有使用本数据,请注明所用数据为“北京大学数字普惠金融指数”;同时烦请按照以下文献引用方式引用我们的成果:郭峰、王靖一、王芳、孔涛、张勋、程志云,《测度中国数字普惠金融发展: 指数编制与空间特征》,《经济学季刊》,2020第19卷第4期,第1401-1418页。 8、指数包括: index_aggregate(数字金融发展总指数), coverage_breadth(数字金融覆盖广度指数,二级维度3-1), usage_depth(数字金融使用深度指数,二级维度3-2), payment(电子支付指数),insurance(网络保险指数), monetary_fund,investment(网络投资指数), credit(网络信贷指数), credit_investigation, digitization_level(普惠金融数字化程度指数,二级维度3-3)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值