基于计算机视觉的可回收垃圾分类系统

该博客探讨了利用计算机视觉技术实现可回收垃圾分类的系统设计。通过数据集的制作、深度学习模型(如Xception)的训练,以及数据增强和图像预处理,解决了过拟合问题,实现了对纸类、塑料、金属、玻璃和织物的精确识别。最终,该系统通过OpenCV捕获摄像头图像,进行实时垃圾分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

**计算机系统的介绍

一 概要

   目前我国工业水平发展迅速,人工智能领域也迎来了飞速发展,面对日益严峻的环境治理问题,本文探讨了计算机视觉在垃圾分类中的可行性,并针对此项目制作了可回收垃圾数据集,使用深度学习模型对数据集进行训练,利用Tensorflow中的keras调用了几种迁移学习模型测试。研究发现Xception模型相对于InceptionV3和VGG16模型具有更快的训练速度和精度。最终选用Xception模型完成了对整个数据集的训练,为了实现可回收垃圾的实时检测,本文利用OpenCV捕获摄像头帧最终完成了系统的设计。此系统为我国环境治理提供了新思路,对于计算机视觉的应用前景有一定的影响。
关键词:计算机视觉;深度学习;图像分类

二、绪论

   可回收垃圾是指适宜回收循环使用和资源再利用的废物,主要分为纸类、塑料、金属、玻璃、纺织物五类,这五大分类都包括着我们生活中常见的垃圾,如纸类中的硬纸板,金属类中的易拉罐,纺织类中的衣物等等。
  要想利用计算机完成可回收垃圾的分类,首先得要让它能“认识”看到的垃圾图像,与人类相同,计算机要完成这项任务也需要进行大量的训练和学习。在机器学习中,深度学习是其最重要的一个分支,本论文也是基于深度学习搭建的神经网络进行训练完成的。
  深度学习是一项机器学习的算法,在图像处理方面,深度学习能提取到视频或者图片中的特征点,筛选出对人有利的部分。大多数现代的深度学习模型都是基于人工神经网络,尤其是卷积神经网络搭建的,与传统学习相比,深度学习具有的优势是巨大的,首先特征的提取就可以通过深度卷积神经网络自动完成,而且可以找到最明显的特征,而且经过深度学习的模型具有较好的精度和灵活性,我们可以随时更换自定义的数据集进行再次训练。总的来说,深度学习让计算机视觉在图像处理中的效果越来越优秀,除此之外深度学习还广泛应用在自然语言处理、药物发现、生物信息、医学图像等多个方面。

三、垃圾分类系统算法设计

3.1数据集的收集与制作

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值