自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

powerwsh

机器学习算法实现

  • 博客(152)
  • 资源 (17)
  • 收藏
  • 关注

原创 window系统下python深度学习开发环境配置

一:python的安装python下载地址:https://www.python.org/getit/1.1. 从这里选择要下载的python及版本(注意你的系统是32位or64位),windows第一个,目前咱们所要下载的版本基本都是python3.6以上(建议下载installer结尾的文件): 1.2.下载好后,解压找到python的.exe...

2020-04-19 18:29:38 937 3

原创 (Spatial Pyramid Pooling,SPP)空间金字塔池化讲解及代码实现

一、引言问题:现存的CNN要求固定尺寸的输入图片,需要通过对原图进行裁剪或者变形来实现,这两种方式可能出现不同的问题:(i)裁剪的区域可能没法包含物体的整体;(ii)变形操作造成目标无用的几何失真。如果识别目标尺寸变化多样,那么提前定义好的尺寸就可能不太适合。产生原因:CNN主要由卷积层和全连接层组成,其中卷积层输出尺寸为一个关于输入大小的变量,而全连接层则产生固定大小的输出,也需要固定大小的权重和输入,所以CNN网络的限制在全连接层需要固定长度的输入。解决方案:SPP,Spytial Pyram

2021-12-07 23:52:07 61

原创 SMU激活函数讲解及代码实现

尽管ReLU有一些严重的缺点,但由于其简单性,ReLU成为深度学习中最常见的选择。本文在已知激活函数Leaky ReLU近似的基础上,提出了一种新的激活函数,称之为Smooth Maximum Unit(SMU)。用SMU替换ReLU,ShuffleNet V2模型在CIFAR100数据集上得到了6.22%的提升。本文复现了这个激活函数。

2021-11-21 00:59:15 181 3

原创 keras 自定义:激活函数,神经网络层,损失函数,正则化器,学习率

1. 自定义激活函数首先,您需要使用 backend定义一个函数。 例如,这是我实现swish激活功能的方式from keras import backend as Kdef swish(x, beta=1.0): return x * K.sigmoid(beta * x)如果要将字符串用作自定义函数的别名,则必须向Keras注册自定义对象。 可以这样完成:from keras.utils.generic_utils import get_custom_objectsget

2021-11-21 00:34:10 1112

原创 毕业设计之—基于CNN的手势识别技术研究与游戏应用实现

1.摘要 手势操作作为一种全新的操作方式,在智能设备中得到了广泛应用。传统的手势识别方法需要复杂的预处理过程,识 别速度与准确度比较差。文章提出一种基于CNN的手势识别技术,取得了较好的识别效果,识别速度也有明显的提升。最后我们将本文设计实现的手势识别技术应用到玩Chrome 浏览器 Dino Jump 游戏上,将“Punch(冲拳手势)”手势与 Dino 角色的跳跃动作绑定在一起进行玩向前跳跃游戏。 2. CNN概述 随着人工智能技术的快速发...

2021-10-29 00:30:36 2400 2

原创 毕业设计之-基于改进卷积模型的人脸性别和情感分类研究与应用实现

1. 摘要针对目前普通卷积神经网络(CNN)在表情和性别识别任务中出现的训练过程复杂,耗时过长,实时性差等问题,提出一种深度可分卷积神经网络的实时人脸表情和性别识别模型.首先,利用多任务级联卷积网络(MTCNN)对不同尺度输入图像进行人脸检测,并利用核相关滤波(KCF)对检测到的人脸位置进行跟踪进而提高检测速度.然后,设置不同尺度卷积核的瓶颈层,用通道合并的特征融合方式形成核卷积单元,以具有残差块和可分卷积单元的深度可分卷积神经网络提取多样化特征,并减少参数数量,轻量化模型结构;使用实时启用的反向传播可

2021-10-27 00:11:42 247

原创 毕业设计之-人脸识别系统设计与实现

使用技术:Tkinter库及人脸识别功能使用百度AI实现。主要功能:人脸识别与属性分析人脸对比人脸搜索人脸库管理实现结果:人脸对比人脸库管理人脸识别与属性分析人脸搜索...

2021-10-20 22:09:25 191

转载 深度学习vs深度学习,到底嘛意思?

人工智能技术飞速发展,它与各个专业的结合使当众多研究领域充满未知与挑战。本社区以追踪前沿深度学习技术为主,共享交流人工智能技术所应用领域的前沿论文解读、技术普及。使"AI+"思想深入普及。 论文解读笔记读论文是当前每个学生及想了解该领域的入门法宝。读每一篇原创性论文,不管是中文还是英文,你都会将电子论文打印下来,认真标注,仔细思考。但是随着时间的久远,这些纸质的东西(或者你在PDF版进...

2021-10-20 21:28:24 24

原创 计算机毕业生毕业论文写作及选题方向

目前计算机技术飞速发展,大约在三四年前,软件工程领域是目前市场较为火热的专业领域,各个大学都相继成立了软件学院或者软件专业,那时安卓APP、网站、系统开发同样也成为大学毕业生和专业硕士毕业生的主流毕设题目。 作为一名马上进入大四的本科毕业生或者研究生毕业生,如何选择自己的毕业设计方向是马上要面临的问题了,首先先来说本科生吧,不管是继续深造还是面临就业,一个好的毕业设计...

2021-10-20 21:27:14 1774 1

翻译 利用GDELT数据集预测(Predicting Social Unrest Using GDELT-论文翻译)

摘要:社会动荡是某些事件和社会因素造成社会普遍不满的负面后果。 我们想利用机器学习(随机森林、助推和神经网络)的力量来解释和预测何时会发生巨大的社会动荡事件(巨大的社会动荡事件是维基百科页面“美国内乱事件清单”所承认的重大社会动荡事件)。 我们审查并发现,在一次此类事件----桑德拉·布兰德的死亡----以及随后发生重大内乱的其他类似事件之后,以负面情绪发表的新闻文章数量有所增加。 我们...

2021-10-20 21:26:06 30

原创 深度学习、机器学习领域毕业设计选题方法及建议

目录1 .机器学习、深度学习选题方向2.毕业论文命题(选题)技巧3. 难度把控3 最后1 .机器学习、深度学习选题方向深度学习已经在语音识别、图像处理等方面取得了巨大成功。其研究方向可以大致分为以下几个域:(标黑的为常见领域)1. 计算机视觉 生物特征识别:人脸识别、步态识别、行人ReID、瞳孔识别等; 图像处理:分类标注、以图搜图、场景分割、车辆车牌、OCR、AR等; 视频分析:安防监控、智慧城市等;2. 自然语言处理 情感分词、实体关系抽取、知...

2021-10-20 21:11:42 1912

原创 基于VGG的图像多标签分类算法详解及实践

摘要将深度学习与人物穿着上的服装图像分类结合是目前的研究热点之一,然而目前对服装图像分类主要是分成单个标签单独处理。在现实生活中,随着网络购物等服装商务新模式的出现、复杂决策的迫切需要,单标签服装图像分类已经不能解决问题,多标签服装图像分类成为一个重要的学习问题,展现出巨大的应用价值。多标签服装图像分类的目标是预测每张服装图像的一组服装属性标签。1.多标签分类定义multi-label classification problem:多标签分类(或者叫多标记分类),是指一个样本的标签数量不..

2021-09-09 22:55:56 141

原创 基于协同过滤的电影推荐系统

页面展示:登录注册:首页:电影详情页:Toy Story为例。黄色提示条下面是相似电影(使用ItemCF计算相似度的方法得出)用户的评分记录:推荐效果:使用UserCF

2021-08-18 23:29:00 211

原创 基于Convolutional Block Attention Module (CBAM)的Multi-Attention模型设计与实现

本文主要介绍的 Multi-Attention 方法只是一个研究思路。只是尝试了在基本模型的顶部集成多注意力机制。其Multi-Attention模型结构如下所示:模型本质上是并行添加了 CBAM 和 DeepMoji 注意力机制,并在最后将它们的特征进行合并。 此外,我们通过集成全局加权平均池 (GWAP) 方法,对 CBAM 机制及其空间模块的末尾部分进行了修改。经过对该模型的输出,我们将Output特征放入全连接的神经网络模型中进行最终的模型训练。其结构图如下:为了验证模.

2021-08-17 23:10:01 115

原创 python语言实现医院管理系统

开发环境及技术:前端:HTML、CSS、BootStrap后端:Flask、SQLite(数据库)、JavaScript、Pythonpython3.6.5\flask1.0.2完成功能:患者、医生、护士的数据可以在各自的表中访问,并实现增删改查。预约 :可用于完成患者与医生的预约。预定房间:显示房间及其可用性状态。药物:可用药物的记录及其品牌描述。患者记录:医院的科室可以与科室主任一起查看。用药记录:可以使用医生当时提供的药物代码以及他们的预约 ID 查看给患者开出

2021-08-14 11:31:26 528 1

原创 基于CBAM-CNN的故障汽车检测

随着汽车行业的迅速发展,交通事故处理逐渐成为交管部门的一项挑战性工作。为进一步提高交通事故处置效率,在静态图像中对事故车辆完成识别和检测任务是本文研究的主要内容。传统的车辆图像识别算法将特征提取与目标分类常分为两个阶段,特征选取需要人工构建,主要依靠人为经验,整个过程效率低下,特别在现实复杂的交通场景中,由于天气、光照、环境以及光学抖动等因素的影响,不能够有效检测出目标。针对传统车辆检测算法的不足,卷积神经网络的兴起逐渐成为主流的目标检测算法,其主要优势在于目标检测中候选区域生成、特征提取、分类、位置精修四

2021-08-12 00:01:49 250

原创 一种结合门控循环单元 (GRU) 和支持向量机 (SVM) 的神经网络架构(代码实现)

门控循环单元 网络结构(GRU) 是基于长短期记忆 (LSTM) 单元的变体,两者都是循环神经网络 (RNN) 的类型。通过经验证据,两种模型都已被证明在各种机器学习任务中有效,例如自然语言处理、语音识别和文本分类等。传统上与大多数神经网络一样,上述两种 RNN 变体都使用 Softmax 函数作为最终的输出层,并使用交叉熵函数来计算其损失。在本文中,我们通过在 GRU 模型的最终输出层中引入支持向量机 (SVM) 作为 Softmax 的替代品来对该模式进行修正。此外,交叉熵函数应替换为margin-b.

2021-07-11 23:33:35 136 5

原创 基于python+django的跳蚤市场系统

## 功能简介:- 商品浏览:商品的图片,售价,种类,简介以及库存等信息。- 商品评论:用户在购买了商品后才会出现商品评论的文本框。- 全文检索:支持对商品种类以及商品名称,简介的检索。- 登录注册:用户的登录与注册,重置密码,密码发送到注册邮箱。- 跳蚤使用协议:协议签属才能使用。- 用户中心:支持用户个人信息,收货地址,修改密码,发布商品,修改个人信息,实名认证,等信息的更新,商品加入购物车,订单生成。- 消息中心:支持用户回复商家信息。- 卖家中心:在商品详细信息中通过联系卖家或则在.

2021-07-07 21:46:34 108 1

转载 论文综述—图神经网络用于医疗诊断的前世今生

随着数据驱动的机器学习研究的进步,探索如何利用机器学习来分析医疗数据变得至关重要。现有方法的一个主要限制是人体生理信息的数据结构通常是不规则的和无序的,很难将这些数据网格化为易于分析处理的格式。而图表神经网络通过边连接交互节点,并可以将时间关联或解剖结构赋值给边的权重,能够很好地利用生物系统中的隐式信息做出医疗诊断,引起了广泛关注。本文介绍图神经网络(GNN)用于医疗诊断和分析的一篇综述文章《Graph-Based Deep Learning for Medical Diagnosis and Anal

2021-06-30 22:06:21 185

原创 基于VGG-16的脑肿瘤检测与应用实现(代码详解)

1.摘要在 21 世纪,医疗保健提供者在脑肿瘤治疗以及对患者体内肿瘤的存在范围进行定性评估和确诊方面面临着重大挑战。无创磁共振成像 (MRI) 技术已成为无任何电离辐射的脑肿瘤的主要诊断工具。从MRI图像中进行确诊和手动特征提取脑肿瘤范围方法是一项非常耗时的任务,并且受限于操作者的经验,容易出现人为错误。尽管对疾病的化疗和治疗方法取得了一定的进步,但在临床对该疾病的确诊中仍旧存在一定的限制,因此需要对(脑)癌检测的工具进行优化,以便获得更为精准的召回率和准确率。计算机视觉和深度学习技术在最新进展中可用于

2021-06-28 21:59:29 196 2

原创 基于LSTM-CNN-CBAM模型的股票预测研究

1.摘要为了更好地对股票价格进行预测,进而为股民提供合理化的建议,提出了一种在结合长短期记忆网络 (LSTM)和卷积神经网络(CNN)的基础上引入注意力机制的股票预测混合模型(LSTM-CNN-CBAM),该模型采用 的是端到端的网络结构,使用LSTM来提取数据中的时序特征,利用CNN挖掘数据中的深层特征,通过在网络结构中加入注意力机制——Convolutional Attention Block Module(CBAM)卷积模块,可以有效地提升网络的特征提取 能力。基于苹果公司2010-01-04至

2021-06-22 00:36:54 968 3

原创 ​​LSTM-CNN-CBAM模型

2021-06-22 00:35:05 252

原创 keras实现注意力机制

class Attention_layer(Layer): def __init__(self, W_regularizer=None, b_regularizer=None, W_constraint=None, b_constraint=None, bias=True, **kwargs): self.supports_masking = True self.

2021-06-22 00:04:42 666 3

原创 基于CNN-LSTM的手写数字识别与应用实现(附tensorflow代码讲解)

摘要CNN卷积神经网络是图像识别和分类等领域的前沿研究方法.由于CNN模型训练效果与实际测试之间存在较大的差距,为提高自由手写数字的识别率,尝试使用TensorFlow搭构CNN网络模型,在完成MNIST数据集训练的基础上实现对自由手写数字的识别,并根据两种样本状态的差别和识别结果提出效果分析及改进方法,实验证明该改进方法获得明显效果....

2021-06-18 23:44:53 645 3

原创 基于改进注意力机制的U-Net模型实现及应用(keras框架实现)

1.摘要上节我们基于U-Net模型设计并实现了在医学细胞分割上的应用(ISBI 挑战数据集),并给出了模型的详细代码解释,在上个博客中,我们为了快速训练U-Net模型对其进行了缩减,将庞大的U-Net的转换为很小&的结构,导致其准确率才达到75%左右。为了进一步提高U-Net模型在细胞分割上的准确率,本文将主要研究两个方面:一是基于U-Net的原始模型结构进行改进,引入卷积注意力机制模块(CBAM)和FocalTversky损失函数;二是引入深监督方法(DEEP SUPERVISION)及多尺.

2021-06-09 23:50:17 952 4

原创 DAMU-Net模型参数结构图

2021-06-09 23:48:24 152

原创 加入卷积注意力机制和深监督方法的U-Net 模型(keras实现版本)

深监督(DEEP SUPERVISION)所谓深监督(Deep Supervision),就是在深度神经网络的某些中间隐藏层加了一个辅助的分类器作为一种网络分支来对主干网络进行监督的技巧,用来解决深度神经网络训练梯度消失和收敛速度过慢等问题。模型代码:def attn_reg_ds(opt,input_size, lossfxn): img_input = Input(shape=input_size, name='input_scale1') conv1 = UnetCon.

2021-06-09 22:52:36 700 3

原创 加入卷积注意力机制的U-Net 模型(keras实现版本)

注意力机制的代码:def AttnGatingBlock(x, g, inter_shape, name): shape_x = K.int_shape(x) # 32 shape_g = K.int_shape(g) # 16 theta_x = Conv2D(inter_shape, (2, 2), strides=(2, 2), padding='same', name='xl'+name)(x) # 16 shape_theta_x = K.int_sh

2021-06-09 22:35:50 525 1

原创 基于U-Net的的图像分割代码详解及应用实现

摘要u-net是卷积网络体系结构,用于快速,精确地分割图像。U-Net是一种卷积神经网络(CNN)方法,由Olaf Ronneberger,Phillip Fischer和Thomas Brox于2015年首次提出,其建议是对生物医学图像进行更好的分割。...

2021-05-30 23:34:31 762 11

原创 将softmax输出转换为分类标签进行画出混淆矩阵

def evaluate1(self, x_test: numpy.ndarray, y_test: numpy.ndarray) -> None: predictions = self.predict(x_test) # print(type(predictions)) # print(y_test) # print(predictions) y_test1=np.argmax(y_test, axis=1) .

2021-05-10 21:57:08 157 1

原创 基于卷积神经网络的口罩佩戴识别与检测

摘要MobileNetV2模型概述与识别结果分析1.基础理论--深度可分离卷积(DepthWise操作)2.MobileNetV1遗留的问题3.MobileNet V2的创新点4.本文网络结构及代码实现5. 实验结果分析应用:口罩检测识别结束参考文献摘要在当前情况下,没有高效的口罩检测应用程序和相关高质量标注数据集,因此想对运输、人口稠密地区,居民区,大型商场实现自动口罩佩戴检测是一个亟需解决且非常有意义的问题,而且,由于缺少“ 带口罩”图像的大型数据集,因此该任

2021-03-15 01:02:01 2347 4

原创 基于ATT-LSTM的语音情感分类

摘要语音情感自动识别是近几年来人机交互领域的研究热点。 然而,由于缺乏对语音波形特点及时间特点的研究,目前的识别精度有待提高。为了充分利用时间特征里情绪饱和度的差异,提出了一种利用帧级语音特征结合基于注意力机制的长期短时记忆(LSTM)递归神经网络模型进行语音识别的方法。从语音波形中提取帧级语音特征,取代传统的统计特征,通过帧的序列来保持原始语音中的时序关系。本项目提出了一种基于LSTM的语音识别及语音情感识别方法,使用该模型的根本原因是它能够获得更好的结果。 实验结果表明,该方法比其他方法更有效。

2021-01-24 23:13:44 1245 2

原创 保持解决:Apache Airflow : airflow initdb throws ModuleNotFoundError: No module named ‘werkzeug.wrappers.

报错:Apache Airflow : airflow initdb throws ModuleNotFoundError: No module named 'werkzeug.wrappers.json'; 'werkzeug.wrappers' is not a package error解决方法:python依赖werkzeug版本有问题,pipinstall werkzeug==0.15.4可以解决。...

2021-01-24 22:20:18 236 1

原创 基于迁移学习的脑肿瘤自动检测研究与系统实现

摘要针对深度学习训练成本高,以及基于磁共振图像(Magnetic Resonance Imaging ,MRI)的脑肿瘤临床诊断需要大量医学常识且极为耗时的问题,本文提出了一种基于迁移学习(Transfer Learning,TL)的卷积神经网络(Convolutional Neural Network,CNN)和磁共振图像的脑肿瘤自动分类诊断方法。该网络以VGG-16加载模型的预训练权重作为前网络,用于增强图像特征提取能力,以基于ResNet改进的CNN网络结构作为后网络,用于对脑肿瘤区域病变进行分类

2021-01-21 00:23:20 370 4

原创 解决报错 from sklearn.externals import joblib ImportError: cannot import name ‘joblib‘

错误: from sklearn.externals import joblibImportError: cannot import name 'joblib'解决方法:重新安装pip install Scikit-learn==0.20.4卸载以前其他版本pip uninstall joblib scikit-leran sklearn

2021-01-11 08:33:38 388

原创 基于卷积神经网络的实体关系抽取(SemEval-2010 Task-8数据集)

摘要关系抽取旨在识别命名实体之间的语义关系.作为自然语言处理中信息抽取的重要子任务,是构建知识图谱,实现语义搜索,建立智能问答系统等应用领域必不可少的关键技术,具有极其重要的研究价值.关系抽取研究的热点经历了知识工程,传统机器学习,深度学习三个不同阶段.本文研究了卷积神经网络应用于实体关系抽取的应用,采用了SemEval-2010 Task 8数据集作为实验测试数据,使用GloVe对句子进行词向量表示,接着获取两个实体之间的距离特征共同作为Embedding层输入,通过拼接的方式将两种特征融合,最后用s

2021-01-11 01:09:16 1076 3

原创 图神经网络(Graph Neural Networks,GNN)综述与相关应用概述

摘要近年来,由于神经网络在模式识别和数据挖掘领域的应用和其易用性,神经网络已获得了巨大的普及。诸如CNN、RNN和自动编码器之类的模型将深度学习技术应用于诸如对象检测和语音识别之类的任务,为神经网络的研究和开发带来了无限潜力。深度学习在图像、文本和视频等数据上的应用非常容易,因为它们基于欧几里得数据。对于将数据表示为对象之间关系非常复杂的图形(非欧几里得)的应用程序呢?这是我们引入图神经网络(GNN)概念的地方。在本文中,我们将研究图和GNN的定义和基础,并了解图神经网络的一些最新应用。一、什么是

2021-01-10 17:26:23 2093

原创 基于AlexNet和Inception模型思想的TFCNet模型设计与实现

摘要为了提高卷积神经网络解决图片分类问题的准确率及深度模型的训练速度,受AlexNet和Inception模块的启发,我们基于AlexNet模型的深度结构及Inception模型的宽度结构(特征的链接)设计实现了具有特征链接操作的深度神经网络模型,我们称之为Tensor Feature Concatenate base onConvolutional Neural Networks(简称为TFCNet)。我们在ImageNet dataset数据集自构建数据上进行了测试,实验结果显示,相比于VGG-1.

2020-12-19 02:39:23 561 3

原创 AlexNet模型思想详解及核心代码实现

摘要AlexNet是2012年ImageNet竞赛冠军获得者Hinton和他的学生Alex Krizhevsky设计的。也是在那年之后,更多更深的神经网络被提出,网络开始往深水区涉入,比如优秀的vgg,GoogLeNet等。AlexNet是在LeNet的基础上加深了网络的结构,学习更丰富更高维的图像特征。本文将详细概述AlexNet的特点及核心思想,最后给出相关的代码实现。AlexNet模型的核心思想问题LeNet是卷积神经网络的祖师爷LeCun在1998年提出,用于解决手写数字识别的视觉.

2020-12-18 22:35:18 973 1

原创 Inception模型思想详解及核心代码实现

摘要Inception 网络是 CNN 分类器发展史上一个重要的里程碑。在 Inception 出现之前,大部分流行 CNN 仅仅是把卷积层堆叠得越来越多,使网络越来越深,以此希望能够得到更好的性能。但是越深的模型存在一些问题:1是在训练数据集有限的情况下,参数太多,容易过拟合。2是网络越大计算复杂度越大,难以应用。3是网络越深,梯度越往后穿越容易消失(梯度消失),难以优化模型。因此,Inception模型在这样的情况下应运而生。Inception模型的思想一句化:复用更多特征,而非目标于精准化

2020-12-18 21:43:47 1185 1

keras-spp代码实现.rar

(Spatial Pyramid Pooling,SPP)空间金字塔池化讲解及代码实现 神经网络框架版本:tensorflow==1.14;keras==2.2.4

2021-12-07

汽车评论情感分析项目代码及标注数据

汽车评论情感分析代码,采用TEXTCNN进行训练与预测,里面包含详细代码及标注数据集;

2019-02-25

经济方面实体关系数据集

面向经济金融领域的实体关系数据集,一共分了5种关系,可以进行关系抽取

2019-02-27

Hospital_Management_System.rar

课设项目:python语言实现医院管理系统 前端:HTML、CSS、BootStrap 后端:Flask、SQLite(数据库)、JavaScript、Python

2021-08-14

model_Alothes.rar

本人的数据集有6类,在网上爬虫分类整理得到的。数据集:女性蓝色裙子:female_bule_dress:415张;女性蓝色T袖:female_bule_shirt:311张;女性红色裙子:female_red_dress:259张;男性黑色T袖:male_black_shirt:257张;男性蓝色T袖:male_bule_shirt:247张;男性红色T袖:male_bule_shirt:194张 代码:keras实现的VGG模型及数据集构建

2021-09-09

python基础进阶1.6:面向对象之类,对象及__init__(),self相关用法讲解

python基础进阶1.6:面向对象之类,对象及__init__(),self相关用法讲解,精简视频;更多内容关注微信公众号:深度学习社区DLC

2020-04-30

gru-svm.rar

一种结合门控循环单元 (GRU) 和支持向量机 (SVM) 的神经网络架构,用于网络流量入侵检测(GRU-SVM模型)

2021-07-11

dataset.rar

本人的数据集有6类,在网上爬虫分类整理得到的,包含网络爬虫代码。女性蓝色裙子:female_bule_dress:415张;女性蓝色T袖:female_bule_shirt:311张;女性红色裙子:female_red_dress:259张;男性黑色T袖:male_black_shirt:257张;男性蓝色T袖:male_bule_shirt:247张;男性红色T袖:male_bule_shirt:194张

2021-09-09

Multi-Attention(CBAM和deepmoji的集合使用).rar

基于Convolutional Block Attention Module (CBAM)的Multi-Attention模型设计与实现。模型本质上是并行添加了 CBAM 和 DeepMoji 注意力机制,并在最后将它们的特征进行合并。

2021-08-17

dmg_car_code.rar

1.数据集:事故车辆和非事故车辆图像共计3800张。 2.代码:CBAM-CNN模型和LeNet模型代码及应用实现代码。

2021-08-11

中文语音情感-4分类.zip

该中文语音数据集包含200条样本数据,每种50条,其情感标签为:["angryy", "fear", "happy","normal"] 。时长约4s.说实话数据质量一般,但是这是那个收费语音情感数据集上下载的部分数据。如果追求高质量数据,还是下载那个收费的吧

2020-05-06

python进阶1.3if、while、for用法.zip

python进阶1.3,里面包含if、while、for等相关与函数的使用方法。视频是分开的,可以根据需求进行观看。更多内容关注微信公众号:深度学习社区DLC

2020-04-27

python进阶1.7继承,重写,多态等.zip

python基础进阶1.7继承,重写,多态等相关视频。至此,我认为了解这些python基础,便可以进行相关项目实践了。在实践中学习更多的python函数用法。关注微信公众号:深度学习社区DLC;博客:https://blog.csdn.net/weixin_40651515了解更多应用

2020-05-02

字符串、列表、字典,元组等相关操作视频.zip

python基础进阶1.4:字符串、列表、字典,元组等相关操作精简讲解视频,更多资源可以关注微信公众号:深度学习社区DLC

2020-04-28

python进阶1.5:函数的使用.zip

如果在开发程序时,需要某块代码多次,但是为了提高编写的效率以及代码的重用,所以把具有独立功能的代码块组织为一个小模块,这就是函数,本视频包含函数定义和调用 ;4种函数的类型 ,函数的嵌套调用,递归函数等相关函数用法视频。更多资源关注微信公众号:深度学习社区DLC

2020-04-29

2018_Predicting Social Unrest Using GDELT.pdf

摘要:社会动荡是某些事件和社会因素造成社会普遍不满的负面后果。 我们想利用机器学习(随机森林、助推和神经网络)的力量来解释和预测何时会发生巨大的社会动荡事件(巨大的社会动荡事件是维基百科页面“美国内乱事件清单”所承认的重大社会动荡事件)。 我们审查并发现,在一次此类事件----桑德拉·布兰德的死亡----以及随后发生重大内乱的其他类似事件之后,以负面情绪发表的新闻文章数量有所增加。 我们使用从谷歌的GDELT(全球事件、语言和音调数据库)表中获取的新闻文章作为一种媒介,研究导致美利坚合众国州和县两级大规模动乱的社会因素和事件。 为了能够识别和预测县一级的社会动荡,可以部署方案/应用程序来抵消其不利影响。 本文试图解决这一任务,即识别、理解和预测何时可能发生社会动荡。  关键词:社会动荡·新闻媒体·GDELT·主题·事件·随机森林·阿达促进随机森林·LSTM

2020-04-09

python进阶视频1.2.zip

python入门基础视频。python发展史,input,print,if-else等相关基础语法视频,视频有删减。快速学习文档关注微信订阅号:深度学习社区DLC

2020-04-26

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除