欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景
道路地面缺陷,如裂缝、坑洼、破损等,是公路维护和保养中常见且重要的问题。这些缺陷不仅影响道路的通行能力,还可能对行车安全构成威胁。传统的道路地面缺陷检测方法通常依赖于人工巡检,不仅效率低下,而且难以全面覆盖所有区域。因此,开发一种高效、准确的道路地面缺陷检测系统对于提高道路维护效率、确保行车安全具有重要意义。基于YOLOv5的深度学习方法为这一问题提供了有效的解决方案。
二、项目目标
本项目旨在利用YOLOv5深度学习框架开发一个高效、准确的道路地面缺陷检测系统。该系统能够自动识别并定位道路图像中的各类缺陷,如裂缝、坑洼、破损等,并生成相应的检测报告。通过该系统,可以实现对道路地面缺陷的自动化检测,减少人力成本,提高检测效率,有助于提前发现道路问题并采取相应的维修措施,从而提高道路安全性和舒适度。
三、项目内容
数据收集与标注:收集包含各类道路地面缺陷的图像数据,并进行详细的标注,形成标注数据集。这些数据将用于训练YOLOv5模型。
YOLOv5模型训练与优化:利用标注数据集对YOLOv5模型进行训练,不断调整和优化模型的参数,以提高模型对道路地面缺陷的识别准确率。同时,采用数据增强技术来扩展数据集,提高模型的泛化能力。
缺陷检测算法实现:基于训练好的YOLOv5模型,实现道路地面缺陷检测算法。该算法能够接收道路图像输入,自动识别并定位图像中的缺陷,并输出缺陷的类别、位置和尺寸等信