**计算机系统的介绍
文章目录
一 概要
传统的检测是靠大量的人力和物力资源,凭借技术专家的经验俩对苹果树叶片病害进行确定并加以处理。然而这样的方法在普遍的情况下是昂贵、费时且不切实际的。为了快速准确的确定植物病害的类型,提高农业生产率是特别重要的。在这种情况下,深度学习一步步进入了人们的视野里,通过深度学的模型,利用图像处理的相关技术对相机所拍摄的图片进行查找,分类,确定其类型,同时得出相应的处理方法。本论文采用了以深度学习
模型进行的苹果树叶片病害的识别,相对于传统的病害识别,以深度学习模型为基础的病害识别准确率更高,可行性也更好。使用的是基于卷积神经网络的LeNet模型和VGG-16模型,除了相对于传统模型的对比之外,还对上述两种模型进行数据准确率的对比,确定一种高效,切实,使用的模型。首先的操作是对数据集进行分集,随后利用python语言通过LeNet模型对训练集和测试集进行数据处理进而得到图片识别的准确率。
【关键词】python;深度学习;图像识别;卷积神经网络;LeNet ;Vgg-16
二、绪论
1.1研究背景
苹果树是世界上果树栽种面积较广的树种之一,而苹果在全世界上不仅产量多,其营养价值也是较高的,广受世界各国人们欢迎和喜爱。基于苹果自身的价值和产量,苹果的产值在世界各国的水果产值中占着很高的比例。同时苹果的进出口量是逐年保持增长,我国也不例外。经济全球化的到来,必将带来机会,同时我国正在构建国内国外双向经济,这同样也会带来机会。在如此的条件下,进出口经济就会有这重大的压力,所以利用技术带来优质果的概率迫在眉睫。在经济的带动下,优质苹果的进出口量将会逐渐增加。同时,苹果在我国农民的水果产业中是较为快捷,使用的致富产业。但是受病虫害的影响,优质苹果的产出量过少,严重影响了苹果的经济发展。这就导致了我国在经济全球化的环境下苹果产业的竞争会处于劣势地位。而这一切最主要的原因之一就是病害的影响。其一是对于病虫害的治理问题每年会投入大量的资金进行处理,如若辨别不及时则会严重影响处理的速度进一步使苹果
产量变低,其二病害自身会对果树产生严重的影响,例如。坐果率低,优质苹果的数量变少,苹果的大小过小等等。在病虫害的影响下,由苹果带来的经济效益将会变低,在经济全球化的竞争中处于劣势的地位,不利于我国经济的发展和进步。
苹果树作为我国重要的经济果树,其常年受病害的侵蚀,这也造成果实的优质产量低,不利于经济的发展,其病害种类繁多,复杂对果农对病害的识别产生了重大的影响。从病害的分类来看,可以分为四种病害,主要是在叶片,树枝,果实以及树根等位置。而苹果叶片病害一般是有这几种:早期落叶病、白粉病、锈病、黑星病、病毒病、银牙病等多种疾病。同时叶片的病变会产生一系列的变化,例如颜色的改变,叶片的大量脱落,一旦发生上述
的情况就出现严重的问题进而削弱树势和苹果树对于上述疾病的抵抗能力,进而造成苹果的质量和产量的下降。由于苹果树病害的种类的繁杂且区分艰难的问题,所以迫切的需要构建能够让广大果农易于操作,实用简单的识别系统,以提供苹果树病害的识别及处理的服务,降低病害对苹果树的影响,最终实现经济效益的最大化。目前国内对于苹果树叶片的识别,一般采用的是传统上的图像处理方法或是请教专家的人力识别。以上的方法都需要通过人力提取特征,不同的是传统的图像处理一般是提取叶片的病变特征、颜色或者是形状,然后输入到特定的仪器和模型中去进行分析和识别。而请教专家识别,则会对经济实力有着不小的要求,以专家的经验判断还会花费不少的时间和人力资源。而深度学习在图像处理、图像识别ÿ