欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景与意义
随着城市化进程的加快和交通流量的不断增加,对道路交通进行实时监控和管理显得尤为重要。传统的交通流量和车速检测方法,如地感线圈、雷达测速等,虽然准确但成本高昂且安装维护复杂。因此,基于视频分析的交通流量识别和车速检测方法因其成本低廉、安装便捷而备受关注。本项目旨在利用Python编程语言结合OpenCV(开源计算机视觉库)实现一个高效、准确的车流量识别和车速检测系统,以提供实时的交通流量和车速信息,支持智能交通管理和道路安全监控[2][3]。
二、技术实现
视频读取:使用OpenCV的VideoCapture类从监控摄像头读取视频流或视频文件[2][3]。
车辆检测:
车流量识别:利用背景消去算法将运动物体从视频中提取出来,消除噪声后识别运动物体的轮廓。在固定区域内统计筛选出来符合条件的轮廓,以实现车流量的识别和计数[1]。
车速检测:采用背景差分法、帧间差分法或基于深度学习的目标检测算法(如YOLO、SSD等)来检测视频中的车辆。接着通过光流法、KLT跟踪器或深度学习中的Siamese网络等方法,对检测到的车辆进行跨帧跟踪,以便后续的速度计算[2]。
车辆跟踪与速度计算:
车辆跟踪:通过跨帧跟踪算法,确保即使在车辆短暂消失或遮挡后,也能重新捕获并跟踪车辆[4]。
速度计算:根据车辆在相邻帧之间的位移和帧间时间差,计算车辆的瞬时速度。同时,通过校准摄像头和参数调