2024牛客寒假算法基础集训营5 H sakiko的排列构造(hard)个人补题o(╥﹏╥)o

文章讲述了如何使用欧拉筛法解决一个问题,即构造一个长度为n的排列,使得每个相邻元素之和为质数。通过欧拉筛法找出小于或等于2n的所有素数,然后根据特定规则填充排列数组。
摘要由CSDN通过智能技术生成

sakiko要构造一个长度为 nnn 的排列 ppp ,使得每一个 pi+i (1≤i≤n)p_i+i\ (1\leq i\leq n)pi​+i (1≤i≤n) 都是质数。

排列的定义为:长度为 nnn 的数组,其中 1−n1-n1−n 每个数字在数组中各出现一次。

输入描述:

第一行输入一个整数 n(1≤n≤106)n(1 \leq n \leq 10^6)n(1≤n≤106) 表示数组长度。

输出描述:

输出 nnn 个整数表示答案,如果有多种解法,则输出任意一种。

若无解则输出 -1。

示例1

输入

3

输出

1 3 2

切比雪夫定理:对于一个大于1的正整数,在(a,2a]内总有一个素数

思路:在序列1.2.3...n中,对于任意一个子序列,若能使其第一个数和最后一个数相加等于一个素数,那么这一段的构造为:从最后一个数倒着把他们放入构造数组中。

#include<bits/stdc++.h>
using namespace std;
const int N=2e6+10;
int prime[N];
bool isprime[N];
int cnt=0;
void eular(int n)//欧拉筛法筛出所有素数
{
	memset(isprime,true,sizeof(isprime));
	isprime[1]=false;
	for(int i=2;i<=n;i++)
	{
		if(isprime[i])prime[cnt++]=i;
		for(int j=0;prime[j]*i<=n&&j<=cnt;j++)
		{
			isprime[i*prime[j]]=false;
			if(i%prime[j]==0)break;
		}
	}
}
int main()
{
	int n;
	cin>>n;
	eular(2*n);//欧拉筛
	int i=n;
	int a[n+1];
	while(i>=1)
	{
		int minp=i+1;
		while(!isprime[minp])minp++;//找到大于n的第一个素数
		int mini=minp-i;
		for(int j=mini;j<=i;j++){a[j]=minp-j;}//存入数组
		i=mini-1;//处理前面未处理的部分
	}
	for(int i=1;i<=n;i++)cout<<a[i]<<" ";//输出
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值