代码
#include <stdio.h>
#include <malloc.h>
#include <stdbool.h>
#define QUEUE_SIZE 5
typedef struct BTNode {
char element;
struct BTNode* left;
struct BTNode* right;
}BTNode, * BTNodePtr;
typedef struct BTNodePtrQueue {
BTNodePtr* nodePtrs;
int front;
int rear;
}BTNodePtrQueue, * QueuePtr;
QueuePtr initQueue() {
QueuePtr resultQueuePtr = (QueuePtr)malloc(sizeof(struct BTNodePtrQueue));
resultQueuePtr->nodePtrs = (BTNodePtr*)malloc(QUEUE_SIZE * sizeof(BTNodePtr));
resultQueuePtr->front = 0;
resultQueuePtr->rear = 1;
return resultQueuePtr;
}
bool isQueueEmpty(QueuePtr paraQueuePtr) {
if ((paraQueuePtr->front + 1) % QUEUE_SIZE == paraQueuePtr->rear) {
return true;
}
return false;
}
void enqueue(QueuePtr paraQueuePtr, BTNodePtr paraBTNodePtr) {
printf("front = %d, rear = %d.\r\n", paraQueuePtr->front, paraQueuePtr->rear);
if ((paraQueuePtr->rear + 1) % QUEUE_SIZE == paraQueuePtr->front % QUEUE_SIZE) {
printf("Error, trying to enqueue %c. queue full.\r\n", paraBTNodePtr->element);
return;
}
paraQueuePtr->nodePtrs[paraQueuePtr->rear] = paraBTNodePtr;
paraQueuePtr->rear = (paraQueuePtr->rear + 1) % QUEUE_SIZE;
printf("enqueue %c ends.\r\n", paraBTNodePtr->element);
}
BTNodePtr dequeue(QueuePtr paraQueuePtr) {
if (isQueueEmpty(paraQueuePtr)) {
printf("Error, empty queue\r\n");
return NULL;
}
paraQueuePtr->front = (paraQueuePtr->front + 1) % QUEUE_SIZE;
printf("dequeue %c ends.\r\n", paraQueuePtr->nodePtrs[paraQueuePtr->front]->element);
return paraQueuePtr->nodePtrs[paraQueuePtr->front];
}
BTNodePtr constructBTNode(char paraChar) {
BTNodePtr resultPtr = (BTNodePtr)malloc(sizeof(BTNode));
resultPtr->element = paraChar;
resultPtr->left = NULL;
resultPtr->right = NULL;
return resultPtr;
}
BTNodePtr stringToBTree(char* paraString) {
int i;
char ch;
QueuePtr tempQueuePtr = initQueue();
BTNodePtr resultHeader;
BTNodePtr tempParent, tempLeftChild, tempRightChild;
i = 0;
ch = paraString[i];
resultHeader = constructBTNode(ch);
enqueue(tempQueuePtr, resultHeader);
while (!isQueueEmpty(tempQueuePtr)) {
tempParent = dequeue(tempQueuePtr);
i++;
ch = paraString[i];
if (ch == '#') {
tempParent->left = NULL;
}
else {
tempLeftChild = constructBTNode(ch);
enqueue(tempQueuePtr, tempLeftChild);
tempParent->left = tempLeftChild;
}
i++;
ch = paraString[i];
if (ch == '#') {
tempParent->right = NULL;
}
else {
tempRightChild = constructBTNode(ch);
enqueue(tempQueuePtr, tempRightChild);
tempParent->right = tempRightChild;
}
}
return resultHeader;
}
void levelwise(BTNodePtr paraTreePtr) {
char tempString[100];
int i = 0;
QueuePtr tempQueuePtr = initQueue();
BTNodePtr tempNodePtr;
enqueue(tempQueuePtr, paraTreePtr);
while (!isQueueEmpty(tempQueuePtr)) {
tempNodePtr = dequeue(tempQueuePtr);
tempString[i] = tempNodePtr->element;
i++;
if (tempNodePtr->left != NULL) {
enqueue(tempQueuePtr, tempNodePtr->left);
}
if (tempNodePtr->right != NULL) {
enqueue(tempQueuePtr, tempNodePtr->right);
}
}
tempString[i] = '\0';
printf("Levelwise: %s\r\n", tempString);
}
void preorder(BTNodePtr tempPtr) {
if (tempPtr == NULL) {
return;
}
printf("%c", tempPtr->element);
preorder(tempPtr->left);
preorder(tempPtr->right);
}
void inorder(BTNodePtr tempPtr) {
if (tempPtr == NULL) {
return;
}
inorder(tempPtr->left);
printf("%c", tempPtr->element);
inorder(tempPtr->right);
}
void postorder(BTNodePtr tempPtr) {
if (tempPtr == NULL) {
return;
}
postorder(tempPtr->left);
postorder(tempPtr->right);
printf("%c", tempPtr->element);
}
int main() {
BTNodePtr tempHeader;
tempHeader = constructBTNode('c');
printf("There is only one node. Preorder visit: ");
preorder(tempHeader);
printf("\r\n");
char* tempString = "acde#bf######";
tempHeader = stringToBTree(tempString);
printf("Preorder: ");
preorder(tempHeader);
printf("\r\n");
printf("Inorder: ");
inorder(tempHeader);
printf("\r\n");
printf("Postorder: ");
postorder(tempHeader);
printf("\r\n");
printf("Levelwise: ");
levelwise(tempHeader);
printf("\r\n");
return 1;
}
运行结果
学习方法+心得体会
理解基本概念:
学习二叉树首先要明确其基本概念,如根节点、左子树、右子树、叶子节点等。这些概念是后续学习的基础,必须牢固掌握。
递归思维:
二叉树的很多操作,如遍历、查找、插入和删除等,都是通过递归实现的。递归思维在二叉树的学习中尤为重要,它能够帮助我们简化问题,将大问题分解为小问题来求解。
遍历策略:
二叉树的遍历方式有多种,包括前序遍历、中序遍历和后序遍历。每种遍历方式都有其特点和用途。理解和掌握这些遍历方式对于后续的学习和应用至关重要。
实践应用:
理论知识的学习需要与实践相结合。在编写二叉树的相关代码时,我会遇到各种问题,如边界条件的处理、递归的调用等。通过不断地调试和修正代码,我能够更深入地理解二叉树的相关知识。
与其他数据结构的联系:
学习二叉树的过程中,我发现它与其他数据结构有着密切的联系。例如,二叉搜索树就是一种特殊的二叉树,它具有排序和搜索的功能;而平衡二叉树则是为了解决二叉搜索树在极端情况下的性能问题而设计的。这些联系使我更加深入地理解了数据结构的本质和它们之间的关系。