代码随想录算法训练营第二十七天| 39. 组合总和 40.组合总和II 131.分割回文串

 39. 组合总和  

思路

把它抽象为树的结构,数组的长度为树的宽度,目标和决定了树的深度。

解题方法

1.首先决定,递归函数参数和返回值,一般是void类型。

2.确定终止条件:sum>target,直接return ;sum==target,用result保存path。

3.单层递归逻辑:for循环,遍历集合中的元素。递归时,起始元素是i,因为题目中说“同一个数字可以无限制重复被选取”。

注意第三步可以做剪枝操作,当sum+candiadates[i]>target时,i已经没有必要向后遍历了,所以i遍历范围是i<=sum+candiadates[i]。

复杂度

时间复杂度:

O(n*2^n),剪枝的远小于这个

空间复杂度:

O(target)

Code

class Solution {
private:
    vector<vector<int>>result;
    vector<int>path;
    void backtracking(vector<int>&candidates,int target,int sum,int startIndex)
    {
        if(sum>target)return;
        if(sum==target){
            result.push_back(path);
            return;
        }
        for(int i=startIndex;i<candidates.size();i++)
        {
            sum+=candidates[i];
            path.push_back(candidates[i]);
            backtracking(candidates,target,sum,i);
            sum-=candidates[i];
            path.pop_back();
        }
    }
public:
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        result.clear();
        path.clear();
        backtracking(candidates,target,0,0);
        return result;
        
    }
};
剪枝版:
class Solution {
private:
    vector<vector<int>>result;
    vector<int>path;
    void backtracking(vector<int>&candidates,int target,int sum,int startIndex)
    {
        if(sum>target)return;
        if(sum==target){
            result.push_back(path);
            return;
        }
        for(int i=startIndex;i<candidates.size()&&sum+candidates[i]<=target;i++)//剪枝操作
        {
            path.push_back(candidates[i]);
            sum+=candidates[i];
            backtracking(candidates,target,sum,i);//可以重复取
            sum-=candidates[i];
            path.pop_back();
        }
    }
public:
    vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
        result.clear();
        path.clear();
        sort(candidates.begin(),candidates.end());
        backtracking(candidates,target,0,0);
        return result;
        
    }
};

40.组合总和II  

思路

 题目关键:树形结构,两层去重,树层去重,树枝去重

解题方法

树层去重:定义一个bool型的数组,若第i个位置已经使用过标记为used[i]==true,若没有,used[i]==false;要同时满足数组前一个元素和当前元素数值相等,且i>0.

树枝去重:递归从i+1位置开.

回溯:把原先加进path的元素再pop出去,sum加上的元素再减去。

复杂度:

时间复杂度

O(n*2^n)

空间复杂度:

O(n)

Code

class Solution {
private:
    vector<vector<int>>result;
    vector<int>path;
    void backtracking(vector<int>&candidates,int target,int sum,int startIndex,vector<bool>&used)
    {
        if(sum>target)return;
        if(sum==target){
            result.push_back(path);
            return;
        }
        for(int i=startIndex;i<candidates.size();i++)
        {
            if(i>0&&candidates[i]==candidates[i-1]&&used[i-1]==false)
            {
                continue;
                }
                path.push_back(candidates[i]);
                sum+=candidates[i];
                used[i]=true;
                backtracking(candidates,target,sum,i+1,used);
                used[i]=false;
                sum-=candidates[i];
                path.pop_back();
            }
        }
    
public:
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        vector<bool>used(candidates.size(),false);
        path.clear();
        result.clear();
        sort(candidates.begin(),candidates.end());
        backtracking(candidates,target,0,0,used);
        return result;

    }
};

131.分割回文串  

思路

 抽象为树形结构,递归纵向遍历,for循环横向遍历,startIndex表示分割线,当startIndex>=s.size()时,表示遍历到末尾了,可以收集结果了。

解题方法

首先定义俩个全局变量result,path

递归函数参数s,startIndex

终止条件:startIndex>=s.size()

单层递归逻辑:for循环从startIndex开始,如果在s中,从startIndex到i-startIndex+1,是回文串,path就加进去,否则continue,然后递归,path.pop_back()

判断是否回文串,用双指针法,一个在首,一个在尾,如果相同,就是回文串。

Code

class Solution {
private:
    vector<vector<int>>result;
    vector<int>path;
    void backtracking(vector<int>&candidates,int target,int sum,int startIndex,vector<bool>&used)
    {
        if(sum>target)return;
        if(sum==target){
            result.push_back(path);
            return;
        }
        for(int i=startIndex;i<candidates.size();i++)
        {
            if(i>0&&candidates[i]==candidates[i-1]&&used[i-1]==false)
            {
                continue;
                }
                path.push_back(candidates[i]);
                sum+=candidates[i];
                used[i]=true;
                backtracking(candidates,target,sum,i+1,used);
                used[i]=false;
                sum-=candidates[i];
                path.pop_back();
            }
        }
    
public:
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        vector<bool>used(candidates.size(),false);
        path.clear();
        result.clear();
        sort(candidates.begin(),candidates.end());
        backtracking(candidates,target,0,0,used);
        return result;

    }
};

代码随想录算法训练营是一个优质的学习和讨论平台,提供了丰富的算法训练内容和讨论交流机会。在训练营中,学员们可以通过观看视频讲解来学习算法知识,并根据讲解内容进行刷题练习。此外,训练营还提供了刷题建议,例如先看视频、了解自己所使用的编程语言、使用日志等方法来提高刷题效果和语言掌握程度。 训练营中的讨论内容非常丰富,涵盖了各种算法知识点和解题方法。例如,在第14训练营中,讲解了二叉树的理论基础、递归遍历、迭代遍历和统一遍历的内容。此外,在讨论中还分享了相关的博客文章和配图,帮助学员更好地理解和掌握二叉树的遍历方法。 训练营还提供了每日的讨论知识点,例如在第15的讨论中,介绍了层序遍历的方法和使用队列来模拟一层一层遍历的效果。在第16的讨论中,重点讨论了如何进行调试(debug)的方法,认为掌握调试技巧可以帮助学员更好地解决问题和写出正确的算法代码。 总之,代码随想录算法训练营是一个提供优质学习和讨论环境的平台,可以帮助学员系统地学习算法知识,并提供了丰富的讨论内容和刷题建议来提高算法编程能力。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [代码随想录算法训练营每日精华](https://blog.csdn.net/weixin_38556197/article/details/128462133)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 100%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值