39. 组合总和
思路
把它抽象为树的结构,数组的长度为树的宽度,目标和决定了树的深度。
解题方法
1.首先决定,递归函数参数和返回值,一般是void类型。
2.确定终止条件:sum>target,直接return ;sum==target,用result保存path。
3.单层递归逻辑:for循环,遍历集合中的元素。递归时,起始元素是i,因为题目中说“同一个数字可以无限制重复被选取”。
注意第三步可以做剪枝操作,当sum+candiadates[i]>target时,i已经没有必要向后遍历了,所以i遍历范围是i<=sum+candiadates[i]。
复杂度
时间复杂度:
O(n*2^n),剪枝的远小于这个
空间复杂度:
O(target)
Code
class Solution {
private:
vector<vector<int>>result;
vector<int>path;
void backtracking(vector<int>&candidates,int target,int sum,int startIndex)
{
if(sum>target)return;
if(sum==target){
result.push_back(path);
return;
}
for(int i=startIndex;i<candidates.size();i++)
{
sum+=candidates[i];
path.push_back(candidates[i]);
backtracking(candidates,target,sum,i);
sum-=candidates[i];
path.pop_back();
}
}
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
result.clear();
path.clear();
backtracking(candidates,target,0,0);
return result;
}
};
剪枝版:
class Solution {
private:
vector<vector<int>>result;
vector<int>path;
void backtracking(vector<int>&candidates,int target,int sum,int startIndex)
{
if(sum>target)return;
if(sum==target){
result.push_back(path);
return;
}
for(int i=startIndex;i<candidates.size()&&sum+candidates[i]<=target;i++)//剪枝操作
{
path.push_back(candidates[i]);
sum+=candidates[i];
backtracking(candidates,target,sum,i);//可以重复取
sum-=candidates[i];
path.pop_back();
}
}
public:
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
result.clear();
path.clear();
sort(candidates.begin(),candidates.end());
backtracking(candidates,target,0,0);
return result;
}
};
40.组合总和II
思路
题目关键:树形结构,两层去重,树层去重,树枝去重
解题方法
树层去重:定义一个bool型的数组,若第i个位置已经使用过标记为used[i]==true,若没有,used[i]==false;要同时满足数组前一个元素和当前元素数值相等,且i>0.
树枝去重:递归从i+1位置开.
回溯:把原先加进path的元素再pop出去,sum加上的元素再减去。
复杂度:
时间复杂度
O(n*2^n)
空间复杂度:
O(n)
Code
class Solution {
private:
vector<vector<int>>result;
vector<int>path;
void backtracking(vector<int>&candidates,int target,int sum,int startIndex,vector<bool>&used)
{
if(sum>target)return;
if(sum==target){
result.push_back(path);
return;
}
for(int i=startIndex;i<candidates.size();i++)
{
if(i>0&&candidates[i]==candidates[i-1]&&used[i-1]==false)
{
continue;
}
path.push_back(candidates[i]);
sum+=candidates[i];
used[i]=true;
backtracking(candidates,target,sum,i+1,used);
used[i]=false;
sum-=candidates[i];
path.pop_back();
}
}
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<bool>used(candidates.size(),false);
path.clear();
result.clear();
sort(candidates.begin(),candidates.end());
backtracking(candidates,target,0,0,used);
return result;
}
};
131.分割回文串
思路
抽象为树形结构,递归纵向遍历,for循环横向遍历,startIndex表示分割线,当startIndex>=s.size()时,表示遍历到末尾了,可以收集结果了。
解题方法
首先定义俩个全局变量result,path
递归函数参数s,startIndex
终止条件:startIndex>=s.size()
单层递归逻辑:for循环从startIndex开始,如果在s中,从startIndex到i-startIndex+1,是回文串,path就加进去,否则continue,然后递归,path.pop_back()
判断是否回文串,用双指针法,一个在首,一个在尾,如果相同,就是回文串。
Code
class Solution {
private:
vector<vector<int>>result;
vector<int>path;
void backtracking(vector<int>&candidates,int target,int sum,int startIndex,vector<bool>&used)
{
if(sum>target)return;
if(sum==target){
result.push_back(path);
return;
}
for(int i=startIndex;i<candidates.size();i++)
{
if(i>0&&candidates[i]==candidates[i-1]&&used[i-1]==false)
{
continue;
}
path.push_back(candidates[i]);
sum+=candidates[i];
used[i]=true;
backtracking(candidates,target,sum,i+1,used);
used[i]=false;
sum-=candidates[i];
path.pop_back();
}
}
public:
vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
vector<bool>used(candidates.size(),false);
path.clear();
result.clear();
sort(candidates.begin(),candidates.end());
backtracking(candidates,target,0,0,used);
return result;
}
};