支持向量机(Support Vector Machines) - 原理与代码实例讲解
关键词:支持向量机, SVM, 分类, 高维空间, 核函数, 分割超平面, 最大间隔
1. 背景介绍
1.1 问题的由来
在机器学习领域,分类问题是基础且普遍存在的任务。传统的线性分类方法,如逻辑回归,受限于只能处理线性可分的数据集。为了扩大处理范围,支持向量机(Support Vector Machines,简称 SVM)应运而生。SVM 是一种基于统计学习理论的监督学习模型,尤其擅长处理非线性可分的数据集。通过引入核函数,SVM 能够将数据映射到高维空间中,从而实现对非线性数据的有效分类。
1.2 研究现状
当前,SVM 已经成为机器学习算法库中的重要成员,广泛应用于文本分类、图像识别、生物信息学等领域。随着计算能力的提升和新算法的不断涌现,SVM 的性能得到了持续优化。同时,人们也在探索如何结合 SVM 与其他机器学习技术,如集成学习,以提高分类准确率和泛化能力。
1.3 研究意义
SVM 的研究意义主要体现在以下几个方面:
- 理论与实践结合