自动机器学习AutoML原理与代码实战案例讲解
关键词:
- 自动机器学习(AutoML)
- 自动特征工程(Auto Feature Engineering)
- 自动模型选择(Auto Model Selection)
- 自动超参数调优(Auto Hyperparameter Tuning)
- 集成学习(Ensemble Learning)
- 自动算法设计(Auto Algorithm Design)
1. 背景介绍
1.1 问题的由来
随着数据量的爆炸式增长以及数据科学在各行各业的广泛应用,机器学习模型的构建变得日益复杂。数据科学家和工程师面临着从数据准备、特征工程、模型选择、超参数调整到最后的模型评估等一系列繁琐而耗时的任务。自动机器学习(AutoML)旨在解决这些问题,通过自动化地完成机器学习工作流中的大多数或全部步骤,从而极大地提高了模型开发的效率和便利性。