分类
文章平均质量分 69
VifrificationZ
这个作者很懒,什么都没留下…
展开
-
机器学习算法的一些实现
KNN做回归和分类的主要区别在于最后做预测时候的决策方式不同。KNN做回归和分类的主要区别在于最后做预测时候的决策方式不同。考虑权重的knn算法(修改方法)线性回归算法可以通过两种方式来求解。不考虑权重的knn算法。knn可视化(图展现)原创 2023-11-14 14:01:20 · 50 阅读 · 0 评论 -
机器学习 数据分析1
在机器学习算法实践中,我们往往有着将不同规格的数据转换到同一规格,或不同分布的数据转换到某个特定分布的需求这种需求统称为将数据“无量纲化"譬如梯度和矩阵为核心的算法中,譬如逻辑回归,支持向量机,神经 网络,无量纲化可以加快求解速度:而在距离类模型,譬如K近邻,K-Means聚类中,无量纲化可以帮我们提升模型精度,避免某一个取值范围特别大的特征对距离计算造成影响。把上面的IV1,V2,IV3,V4加起来,就是这个变量的IV值,然后把所有变量的IV值都算出来,就可以根据V值的大小来看出变量的预测能力。原创 2023-11-14 13:59:05 · 65 阅读 · 0 评论 -
分类算法-
由于其有着坚实的数学基础,贝叶斯分类算法的误判率是很低的。贝叶斯方法的特点是结合先验概率和后验概率,贝叶斯分类算法在数据集较大的情况下表现出较高的准确率,同时算法本身也比较简单。如果把Y看成类别,X看成特征,P(Yk|X)就是在已知特征的情况下求YK类别的概率,而对PYkX)的计算又全部转化到类别Yk的特征分布上来。X_test: 接收输入的数组类型测试样本,一般是二维数组,每一行是一个样本,每一列是一个属性。如果θ是6,那么就会在曲线右边往下趋近2,因为左边的斜率是负的,右边的是正的。原创 2023-11-14 13:58:27 · 40 阅读 · 0 评论