例题一
解法⼆(滑动窗⼝):
算法思路:
让滑动窗⼝满⾜:从
i
位置开始,窗⼝内所有元素的和⼩于
target
(那么当窗⼝内元素之和
第⼀次⼤于等于⽬标值的时候,就是
i
位置开始,满⾜条件的最⼩⻓度)。
做法:将右端元素划⼊窗⼝中,统计出此时窗⼝内元素的和:
如果窗⼝内元素之和⼤于等于
target
:更新结果,并且将左端元素划出去的同时继续判
断是否满⾜条件并更新结果(因为左端元素可能很⼩,划出去之后依旧满⾜条件)
如果窗⼝内元素之和不满⾜条件:
right++
,另下⼀个元素进⼊窗⼝。
例题二
解法⼆(滑动窗⼝):
算法思路:
研究的对象依旧是⼀段连续的区间,因此继续使⽤「滑动窗⼝」思想来优化。
让滑动窗⼝满⾜:窗⼝内所有元素都是不重复的。
做法:右端元素
ch
进⼊窗⼝的时候,哈希表统计这个字符的频次:
▪
如果这个字符出现的频次超过 1
,说明窗⼝内有重复元素,那么就从左侧开始划出窗⼝,
直到
ch
这个元素的频次变为
1
,然后再更新结果。
▪
如果没有超过 1
,说明当前窗⼝没有重复元素,可以直接更新结果
例题三
解法(滑动窗⼝):
算法思路:
不要去想怎么翻转,不要把问题想的很复杂,这道题的结果⽆⾮就是⼀段连续的 1 中间塞了 k
个
0
嘛。因此,我们可以把问题转化成:求数组中⼀段最⻓的连续区间,要求这段区间内 0 的个数不超过 k
个。
既然是连续区间,可以考虑使⽤「滑动窗⼝」来解决问题。
算法流程:
a.
初始化⼀个⼤⼩为 2
的数组就可以当做哈希表
hash
了;初始化⼀些变量
left = 0
, right = 0 ,
ret = 0
;
b.
当right ⼩于数组⼤⼩的时候,⼀直下列循环:
i.
让当前元素进⼊窗⼝,顺便统计到哈希表中;
ii.
检查 0
的个数是否超标:
•
如果超标,依次让左侧元素滑出窗⼝,顺便更新哈希表的值,直到
0
的个数恢复正常;
iii.
程序到这⾥,说明窗⼝内元素是符合要求的,更新结果;
iv.
right++ ,处理下⼀个元素;
c.
循环结束后, ret
存的就是最终结果。
例题四
解法(滑动窗⼝):
算法思路:
题⽬要求的是数组「左端+右端」两段连续的、和为
x
的最短数组,信息量稍微多⼀些,不易理清
思路;我们可以转化成求数组内⼀段连续的、和为sum(nums) - x 的最⻓数组。此时,就是熟悉的「滑动窗⼝」问题了。
算法流程:
a.
转化问题:求 target = sum(nums) - x 。如果 target < 0
,问题⽆解;
b.
初始化左右指针 l = 0
,
r = 0
(滑动窗⼝区间表⽰为
[l, r)
,左右区间是否开闭很重要,必须设定与代码⼀致),记录当前滑动窗⼝内数组和的变量 sum = 0
,记录当前满⾜条件数组的最⼤区间⻓度 maxLen = -1
;
c.
当 r
⼩于等于数组⻓度时,⼀直循环:
i.
如果 sum < target ,右移右指针,直⾄变量和⼤于等于target ,或右指针已经移到头;
ii.
如果sum > target ,右移左指针,直⾄变量和⼩于等于target ,或左指针已经移到头;
iii.
如果经过前两步的左右移动使得 sum == target
,维护满⾜条件数组的最⼤⻓度,并
让下个元素进⼊窗⼝;
d.
循环结束后,如果
maxLen
的值有意义,则计算结果返回;否则,返回
-1
。
例题五
解法(滑动窗⼝):
算法思路:
研究的对象是⼀段连续的区间,可以使⽤「滑动窗⼝」思想来解决问题。
让滑动窗⼝满⾜:窗⼝内⽔果的种类只有两种。
做法:右端⽔果进⼊窗⼝的时候,⽤哈希表统计这个⽔果的频次。这个⽔果进来后,判断哈希表的⼤⼩:
▪
如果⼤⼩超过 2:说明窗⼝内⽔果种类超过了两种。那么就从左侧开始依次将⽔果划出窗
⼝,直到哈希表的⼤⼩⼩于等于 2,然后更新结果;
▪
如果没有超过 2,说明当前窗⼝内⽔果的种类不超过两种,直接更新结果 ret。
算法流程:
a.
初始化哈希表 hash 来统计窗⼝内⽔果的种类和数量;
b.
初始化变量:左右指针 left = 0,right = 0,记录结果的变量 ret = 0;
c.
当 right ⼩于数组⼤⼩的时候,⼀直执⾏下列循环:
i.
将当前⽔果放⼊哈希表中;
ii.
判断当前⽔果进来后,哈希表的⼤⼩:
•
如果超过 2:
将左侧元素滑出窗⼝,并且在哈希表中将该元素的频次减⼀;
如果这个元素的频次减⼀之后变成了 0,就把该元素从哈希表中删除;
重复上述两个过程,直到哈希表中的⼤⼩不超过 2;
iii.
更新结果 ret;
iv.
right++,让下⼀个元素进⼊窗⼝;
d.
循环结束后,ret 存的就是最终结果。
例题六
解法(滑动窗⼝ + 哈希表):
算法思路:
◦
因字符串 p
的异位词的⻓度⼀定与字符串
p
的⻓度相同,所以我们可以在字符串
s
中构
造⼀个⻓度为与字符串
p
的⻓度相同的滑动窗⼝,并在滑动中维护窗⼝中每种字⺟的数量;
◦
当窗⼝中每种字⺟的数量与字符串 p
中每种字⺟的数量相同时,则说明当前窗⼝为字符串
p
的异位词;
◦
因此可以⽤两个⼤⼩为 26
的数组来模拟哈希表,⼀个来保存
s
中的⼦串每个字符出现的个
数,另⼀个来保存
p
中每⼀个字符出现的个数。这样就能判断两个串是否是异位词。
例题七
算法思路:
如果我们把每⼀个单词看成⼀个⼀个字⺟,问题就变成了找到「字符串中所有的字⺟异位词」。⽆
⾮就是之前处理的对象是⼀个⼀个的字符,我们这⾥处理的对象是⼀个⼀个的单词。
例题八
解法(滑动窗⼝ + 哈希表):
算法思路:
◦
研究对象是连续的区间,因此可以尝试使⽤滑动窗⼝的思想来解决。
◦
如何判断当前窗⼝内的所有字符是符合要求的呢?我们可以使⽤两个哈希表,其中⼀个将⽬标串的信息统计起来,另⼀个哈希表动态的维护窗⼝内字符串的信息。
当动态哈希表中包含⽬标串中所有的字符,并且对应的个数都不⼩于⽬标串的哈希表中各个字符的个数,那么当前的窗⼝就是⼀种可⾏的⽅案。