⽬录 1. 整数在内存中的存储
2. ⼤⼩端字节序和字节序判断
3. 浮点数在内存中的存储
1. 整数在内存中的存储
在之前的知识当中我们知道: 整数的2进制表⽰⽅法有三种,即 原码、反码和补码 三种表⽰⽅法均有符号位和数值位两部分,符号位都是⽤0表⽰“正”,⽤1表⽰“负”,⽽数值位最 ⾼位的⼀位是被当做符号位,剩余的都是数值位。
正整数的原、反、补码都相同。
但是负整数的三种表⽰⽅法各不相同。 原码:直接将数值按照正负数的形式翻译成⼆进制得到的就是原码。 反码:将原码的符号位不变,其他位依次按位取反就可以得到反码。 补码:反码+1就得到补码。
对于整形来说:数据存放内存中其实存放的是补码
2. ⼤⼩端字节序和字节序判断
大小端的概念:其实超过⼀个字节的数据在内存中存储的时候,就有存储顺序的问题,按照不同的存储顺序,我们分 为⼤端字节序存储和⼩端字节序存储,下⾯是具体的概念: ⼤端(存储)模式:是指数据的低位字节内容保存在内存的⾼地址处,⽽数据的⾼位字节内容,保存 在内存的低地址处。 ⼩端(存储)模式:是指数据的低位字节内容保存在内存的低地址处,⽽数据的⾼位字节内容,保存 在内存的⾼地址处。
大家可以看看以下在vs中的代码来更加清晰的了解它:
由此可见:在内存当中(高字节)11223344(低字节)被存放成为44332211(顺序倒过来了),又在内存中从左往右地址是逐渐升高的,所以vs编译器是小端存储。
如下也是:
3. 浮点数在内存中的存储
根据国际标准IEEE(电⽓和电⼦⼯程协会) 754,任意⼀个⼆进制浮点数V可以表⽰成下⾯的形式: V = (−1) ∗ S M ∗ 2E
• (−1)S 表⽰符号位,当S=0,V为正数;当S=1,V为负数
• M 表⽰有效数字,M是⼤于等于1,⼩于2的
• 2 E 表⽰指数位
eg.5.0
转为二进制数就是:101.1,变成科学计数法就成为了1.01*2^2,则上述中s=1,m=1.01,E=2.
IEEE 754规定:
1.对于32位的浮点数,最⾼的1位存储符号位S,接着的8位存储指数E,剩下的23位存储有效数字M
2.对于64位的浮点数,最⾼的1位存储符号位S,接着的11位存储指数E,剩下的52位存储有效数字M
浮点数存的过程
IEEE 754 对有效数字M和指数E,还有⼀些特别规定。 前⾯说过, 1≤M<2 ,也就是说,M可以写成 1.xxxxxx 的形式,其中 xxxxxx 表⽰⼩数部分。
IEEE 754 规定:
在计算机内部保存M时,默认这个数的第⼀位总是1,因此可以被舍去,只保存后⾯的 xxxxxx部分。⽐如保存1.01的时候,只保存01,等到读取的时候,再把第⼀位的1加上去。这样做的⽬ 的,是节省1位有效数字。
⾄于指数E,E为⼀个⽆符号整数(unsigned int) 这意味着,如果E为8位,它的取值范围为0~255;如果E为11位,它的取值范围为0~2047。但是,我 们知道,科学计数法中的E是可以出现负数的,所以IEEE 754规定,存⼊内存时E的真实值必须再加上 ⼀个中间数,对于8位的E,这个中间数是127;对于11位的E,这个中间数是1023
浮点数取的过程
指数E从内存中取出还可以再分成三种情况:
1.E不全为0或不全为1 这时,浮点数就采⽤下⾯的规则表⽰,即指数E的计算值减去127(或1023),得到真实值,再将有效 数字M前加上第⼀位的1。 ⽐如:0.5 的⼆进制形式为0.1,由于规定正数部分必须为1,即将⼩数点右移1位,则为1.0*2^(-1),其 阶码为-1+127(中间值)=126,表⽰为01111110,⽽尾数1.0去掉整数部分为0,补⻬0到23位 00000000000000000000000,则其⼆进制表⽰形式为: 1 0 01111110 00000000000000000000000
2.E全为0 这时,浮点数的指数E等于1-127(或者1-1023)即为真实值,有效数字M不再加上第⼀位的1,⽽是还 原为0.xxxxxx的⼩数。这样做是为了表⽰±0,以及接近于0的很⼩的数字。 1 0 00000000 00100000000000000000000
E全为1 这时,如果有效数字M全为0,表⽰±⽆穷⼤(正负取决于符号位s);