给你一个 无重复元素 的整数数组 candidates
和一个目标整数 target
,找出 candidates
中可以使数字和为目标数 target
的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。
candidates
中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。
对于给定的输入,保证和为 target
的不同组合数少于 150
个。
示例 1:
输入:candidates = [2,3,6,7], target = 7 输出:[[2,2,3],[7]] 解释:2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。7 也是一个候选, 7 = 7 。仅有这两种组合。
示例 2:
输入: candidates = [2,3,5], target = 8 输出: [[2,2,2,2],[2,3,3],[3,5]]
示例 3:
输入: candidates = [2], target = 1 输出: []
我的解:
搜索回溯
对于这类寻找所有可行解的题,我们都可以尝试用「搜索回溯」的方法来解决。
我们定义递归函数 dfs(target,combine,idx)表示当前在 candidates 数组的第 idx位,还剩 target要组合,已经组合的列表为 combine。
class Solution {
public:
void dfs(vector<int>&candidate,int target,vector<vector<int>>&ans,vector<int>&combine,int idx){
if(idx==candidate.size()){
return;
}
if(target==0){
ans.emplace_back(combine);
return;
}
dfs(candidate,target,ans,combine,idx+1);
if(target-candidate[idx]>=0){
combine.emplace_back(candidate[idx]);
dfs(candidate,target-candidate[idx],ans,combine,idx);
combine.pop_back();
}
}
vector<vector<int>> combinationSum(vector<int>& candidates, int target) {
vector<vector<int>>ans;
vector<int>combine;
dfs(candidates,target,ans,combine,0);
return ans;
}
};