二叉树:距离最近的共同祖先
时间限制: 1s
类别: DS:树->中等
问题描述
目的:使用C++模板设计二叉树的抽象数据类型(ADT)。并在此基础上,使用二叉树ADT的基本操作,设计并实现简单应用的算法设计。
内容:(1)请参照链表的ADT模板,设计二叉树的抽象数据类型。(由于该环境目前仅支持单文件的编译,故将所有内容都集中在一个源文件内。在实际的设计中,推荐将抽象类及对应的派生类分别放在单独的头文件中。参考教材、课件,以及网盘中的链表ADT原型文件,自行设计二叉树的ADT。)
注意:二叉树ADT的基本操作的算法设计很多要用到递归的程序设计方法。
(2)ADT的简单应用:使用该ADT设计并实现若干应用二叉树的算法设计。
应用:要求设计一个算法,查找距离二叉树中2个结点最近的共同祖先。二叉树的存储结构的建立参见二叉树应用1。
注意:x、y都是属于该二叉树的结点。
参考函数原型:
//查找距离二叉树中2个结点最近的共同祖先 (用户函数)
template<class ElemType>
BinaryTreeNode<ElemType> * FindNearAncient( BinaryTree<ElemType> &T, ElemType &x, ElemType &y );
辅助函数:
//查找从根结点到元素值为x的结点的路径 (成员函数,参见基本操作18)
template<class ElemType> //Q为存放路径的顺序队列
void BinaryTree<ElemType>::FindPath( ElemType &x, SqQueue<BinaryTreeNode<ElemType> *> &Q );
输入说明
第一行:表示无孩子或指针为空的特殊分隔符
第二行:二叉树的先序序列(结点元素之间以空格分隔)
第三行:元素值x
第四行:元素值y
输出说明
第一行:元素值(共同祖先)
如x、y中有根结点,则输出NULL
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <cmath>
#include <cstring>
#include <string>
#include <vector>
#include <queue>
#include <sstream>
#include <stack>
#include <map>
#include <ctime>
#include <array>
#include <set>
using namespace std;
vector<string> departString_string(string data)
{
vector<int> back_part;//output type
int i, j;
vector<string> part;
string A_part;
stringstream room;
room.str(data);
while (room >> A_part)
part.push_back(A_part);
return part;
}
template<class ElemType>
struct tree_point {
ElemType data;//数据
struct tree_point* l_child, * r_child;//左、右孩子指针
};
template<class ElemType>
class BinaryTree {
private:
vector<tree_point<ElemType>*> outlist;
tree_point<ElemType>* root; // 头指针
public:
BinaryTree() :root(NULL)
{
//无参数的构造函数
}
~BinaryTree()
{
//析构函数
}
void BinaryTree_fron(vector<ElemType> lis, ElemType nut)
{
stack<tree_point<ElemType>*> s;
tree_point<ElemType>* p_Parent = NULL, * p_Child = NULL;
int i = 0;
int flag = 0;//控制左右
p_Parent = new tree_point<ElemType>;
p_Parent->data = lis[i];
p_Parent->l_child = p_Parent->r_child = NULL;
s.push(p_Parent);
root = p_Parent;
i = 1;
flag = 0;
while (!s.empty())
{
if (lis[i] != nut)
{
p_Parent = new tree_point<ElemType>;
p_Parent->data = lis[i];
p_Parent->l_child = p_Parent->r_child = NULL;
if (flag == 0)
{
p_Child = s.top();
p_Child->l_child = p_Parent;
}
else if (flag == 1)
{
p_Child = s.top();
s.pop();
p_Child->r_child = p_Parent;
}
s.push(p_Parent);
flag = 0;
}
else
{
if (flag == 0)
flag = 1;
else if (flag == 1)
s.pop();
}
i++;
}
}
tree_point<ElemType>* get_root()
{
return root;
}
void s_qianxu(void)
{
outlist.clear();
if (root == NULL)
return;
tree_point<ElemType>* p = root;
stack<tree_point<ElemType>*> s;
while (!s.empty() || p)
{
while (p)
{
outlist.push_back(p);
s.push(p);
p = p->l_child;
}
if (!s.empty())
{
p = s.top();
s.pop();
p = p->r_child;
}
}
return;
}
void s_zhongxu(void)
{
outlist.clear();
if (root == NULL)
return;
tree_point<ElemType>* p = root;
stack<tree_point<ElemType>*> s;
while (!s.empty() || p)
{
if (p)
{
s.push(p);
p = p->l_child;
}
else
{
p = s.top();
s.pop();
outlist.push_back(p);
p = p->r_child;
}
}
return;
}
void s_houxu(void)
{
if (root == NULL)
return;
stack<tree_point<ElemType>*> s;
//pCur:当前访问节点,pLastVisit:上次访问节点
tree_point<ElemType>* pCur, * pLastVisit;
pCur = root;
pLastVisit = NULL;
while (pCur)
{
s.push(pCur);
pCur = pCur->l_child;
}
while (!s.empty())
{
pCur = s.top();
s.pop();
if (pCur->r_child == NULL || pCur->r_child == pLastVisit)
{
outlist.push_back(pCur);
pLastVisit = pCur;
}
else
{
s.push(pCur);
pCur = pCur->r_child;
while (pCur)
{
s.push(pCur);
pCur = pCur->l_child;
}
}
}
return;
}
void qianxu(tree_point<ElemType>* t)
{
outlist.push_back(t);
if (t->l_child != NULL)
qianxu(t->l_child);
if (t->r_child != NULL)
qianxu(t->r_child);
return;
}
void zhongxu(tree_point<ElemType>* t)
{
if (t->l_child != NULL)
zhongxu(t->l_child);
outlist.push_back(t);
if (t->r_child != NULL)
zhongxu(t->r_child);
return;
}
int two_n(int twoNum)
{
int ans = 1;
while (twoNum--)
ans *= 2;
return ans;
}
void houxu(tree_point<ElemType>* t)
{
if (t->l_child != NULL)
houxu(t->l_child);
if (t->r_child != NULL)
houxu(t->r_child);
outlist.push_back(t);
return;
}
int c_t = 0;
int full_floorTree = 0;
void cengxu(tree_point<ElemType>* t)
{
vector<tree_point<ElemType>* > q;
q.push_back(t);
int last = 1, cur = 0,ceng_num;
while (cur < q.size())
{
ceng_num = 0;
last = q.size();
while (cur < last)
{
outlist.push_back(q[cur]);
if (q[cur]->l_child)
q.push_back(q[cur]->l_child);
if (q[cur]->r_child)
q.push_back(q[cur]->r_child);
++cur;
ceng_num++;
}
c_t++;
if (ceng_num != two_n(c_t-1))
{
full_floorTree ++;
}
}
}
bool floorCheck_full()
{
if (!root)
return 0;
queue<tree_point<ElemType>* > Q;
tree_point<ElemType>* p;
p = root;
Q.push(p);
while (!Q.empty())
{
p = Q.front();
Q.pop();
if (p==NULL)
break;
Q.push(p->l_child);
Q.push(p->r_child);
}
while (!Q.empty())
{
p = Q.front();
Q.pop();
if (p)
return false;
}
return true;
}
void out_lis()
{
for (int i = 0; i < outlist.size(); i++)
{
printf("%s", outlist[i]->data.c_str());
if (i != outlist.size() - 1)
printf(",");
else
printf("\n");
}
outlist.clear();
}
int cnt = 0, p_cnt = 0;
void t_cnt(tree_point<ElemType>* t)
{
p_cnt++;
if (t->l_child != NULL && t->r_child != NULL)
cnt++;
if (t->l_child != NULL)
t_cnt(t->l_child);
if (t->r_child != NULL)
t_cnt(t->r_child);
}
int cengshu()
{
c_t = 0;
cengxu(root);
outlist.clear();
return c_t;
}
int P_cengshu(tree_point<ElemType>* t)
{
c_t = 0;
cengxu(t);
outlist.clear();
return c_t;
}
int twocnt()
{
cnt = 0;
t_cnt(root);
return cnt;
}
int P_twocnt(tree_point<ElemType>* t)
{
cnt = 0;
t_cnt(t);
return cnt;
}
int pointcnt()
{
p_cnt = 0;
t_cnt(root);
return p_cnt;
}
tree_point<ElemType>* father_p;
void find_fatherNow(tree_point<ElemType>* t, ElemType ss)
{
if (t->l_child != NULL)
if (t->l_child->data == ss)
{
father_p = t;
return;
}
if (t->r_child != NULL)
if (t->r_child->data == ss)
{
father_p = t;
return;
}
if (t->l_child != NULL)
find_fatherNow(t->l_child, ss);
if (t->r_child != NULL)
find_fatherNow(t->r_child, ss);
return;
}
tree_point<ElemType>* find_father(tree_point<ElemType>* t, ElemType ss)
{
father_p = NULL;
find_fatherNow(t, ss);
return father_p;
}
tree_point<ElemType>* nas_p;
void find_selfNOW(tree_point<ElemType>* t, ElemType ss)
{
if (t->data == ss)
nas_p = t;
if (t->l_child != NULL)
find_selfNOW(t->l_child, ss);
if (t->r_child != NULL)
find_selfNOW(t->r_child, ss);
return;
}
tree_point<ElemType>* find_self(tree_point<ElemType>* t, ElemType ss)
{
nas_p = NULL;
find_selfNOW(t, ss);
return nas_p;
}
void fast_delChild(tree_point<ElemType>* t, bool flag)
{
if (flag == 0)
t->l_child = NULL;
else
t->r_child = NULL;
return;
}
void slow_delChild(tree_point<ElemType>* t, bool flag)
{
if (flag == 0)
t->l_child = NULL;
else
t->r_child = NULL;
return;
}
bool is_same = 1;
bool check_same(tree_point<ElemType>* t1, tree_point<ElemType>* t2)
{
if (((t1->l_child != NULL && t2->l_child != NULL) || (t1->l_child == NULL && t2->l_child == NULL))
&& ((t1->r_child != NULL && t2->r_child != NULL) || (t1->r_child == NULL && t2->r_child == NULL))
&& t1->data == t2->data)
{
if (t1->l_child != NULL)
check_same(t1->l_child,t2->l_child);
if (t1->r_child != NULL)
check_same(t1->r_child, t2->r_child);
}
else
{
is_same = 0;
return 0;
}
}
bool operator==(BinaryTree B2)
{
is_same = 1;
check_same(root, B2.get_root());
return is_same;
}
vector<ElemType> path_note;
void find_path_DFS(tree_point<ElemType>* t, ElemType num)//递归寻找元素节点
{
path_note.push_back(t->data);
if (t->data == num)
{
int i;
for (i = 0; i < path_note.size()-1; i++)
printf("%s->", path_note[i].c_str());
printf("%s\n", path_note[path_note.size()-1].c_str());
}
if (t->l_child != NULL)
find_path_DFS(t->l_child, num);
if (t->r_child != NULL)
find_path_DFS(t->r_child, num);
path_note.erase(path_note.end() - 1);
}
void find_path(ElemType elemt)
{
find_path_DFS(root, elemt);
return;
}
tree_point<ElemType>* find_sameFather_DFS(tree_point<ElemType>* t, tree_point<ElemType>*p, tree_point<ElemType>*q)
{
if (t == NULL)
return NULL; // 如果树为空,直接返回null
if (t == p || t == q)
return t; // 如果 p和q中有等于 root的,那么它们的最近公共祖先即为root
// 左子树和右子树
tree_point<ElemType>* N_left = find_sameFather_DFS(t->l_child, p, q);
// 遍历左子树,找到了p或q,则先返回
tree_point<ElemType>* N_right = find_sameFather_DFS(t->r_child, p, q);
// 遍历右子树,找到了p或q,则先返回
if (N_left == NULL)
return N_right;
// p和 q都找不到,则 p和 q一定都在右子树中,先遍历到的那个就是最近公共祖先(一个节点也可以是它自己的祖先)
else if (N_right == NULL)
return N_left;
// 如果 l不为空,在左子树中有找到节点(p或q),这时候要再判断一下右子树中的情况,如果在右子树中,p和q都找不到,则 p和q一定都在左子树中
else return t;
//当 l和 r均不为空时,说明 p、q节点分别在 root异侧, 最近公共祖先即为 root
}
tree_point<ElemType>* find_sameFather(ElemType pas_a, ElemType pas_b)
{
tree_point<string>* ans, * tp1, * tp2;
tp1 = find_self(root, pas_a);
tp2 = find_self(root, pas_b);
if (tp1 == root || tp2 == root)
return NULL;
ans = find_sameFather_DFS(root, tp1, tp2);
if (ans == tp1)
{
ans = find_father(root, ans->data);
}
if (ans == tp2)
{
ans = find_father(root, ans->data);
}
return ans;
}
};
int main()
{
string s, ins, ins1, nulls;
vector<string> part_in, part_in1;
BinaryTree<string> a;
/*BinaryTree<string> b;*/
cin >> nulls;
cin.get();
getline(cin, ins);
part_in = departString_string(ins);
a.BinaryTree_fron(part_in, nulls);
string pas_a,pas_b;
cin >> pas_a >> pas_b;
auto ans = a.find_sameFather(pas_a, pas_b);
if (ans == NULL)
printf("NULL\n");
else
printf("%s\n", ans->data.c_str());
return 0;
}