搬寝室(动态规划)

搬寝室是很累的,xhd深有体会.时间追述2006年7月9号,那天xhd迫于无奈要从27号楼搬到3号楼,因为10号要封楼了.看着寝室里的n件物品,xhd开始发呆,因为n是一个小于2000的整数,实在是太多了,于是xhd决定随便搬2*k件过去就行了.但还是会很累,因为2*k也不小是一个不大于n的整数.幸运的是xhd根据多年的搬东西的经验发现每搬一次的疲劳度是和左右手的物品的重量差的平方成正比(这里补充一句,xhd每次搬两件东西,左手一件右手一件).例如xhd左手拿重量为3的物品,右手拿重量为6的物品,则他搬完这次的疲劳度为(6-3)^2 = 9.现在可怜的xhd希望知道搬完这2*k件物品后的最佳状态是怎样的(也就是最低的疲劳度),请告诉他吧.

输入格式:

每组输入数据有两行,第一行有两个数n,k(2<=2*k<=n<2000).第二行有n个整数分别表示n件物品的重量(重量是一个小于2^15的正整数).

输出格式:

对应每组输入数据,输出数据只有一个表示他的最少的疲劳度,每个一行.

输入样例:

2 1
1 3

输出样例:

4

 

题目意思为求n个物品,拿k对使得消耗的体力最少,或者说是这k对物品,每一对中两件物品的质量差平方最小,所以要使得质量差的平方小,只能排序后取质量相邻两个物品作为一对;
现在设dp[i][j]为前i件物品组成j对所消耗的体力最小;
这时分两种情况含有第i件物品和不含有第i件物品(即第i件物品是不是含在第j对里)
1.含有i件物品 则有      dp[i][j]=dp[i-2][j-1]+(weight[i]-weight[i-1])*(weight[i]-weight[i-1]);
2.不含第i件物品则有   dp[i][j]=dp[i-1][j];
所以动态转移方程为:dp[i][j] = min(dp[i - 1][j], dp[i - 2][j-1] + (weight[i] - weight[i - 1]) * (weight[i] - weight[i - 1]));

代码中会出现0x3f3f3f,下作解释

  1. 0x3f3f3f3f的十进制是1061109567,也就是10^9级别的(和0x7fffffff一个数量级),而一般场合下的数据都是小于10^9的,所以它可以作为无穷大使用而不致出现数据大于无穷大的情形。
  2. 另一方面,由于一般的数据都不会大于10^9,所以当我们把无穷大加上一个数据时,它并不会溢出(这就满足了“无穷大加一个有穷的数依然是无穷大”),事实上0x3f3f3f3f+0x3f3f3f3f=2122219134,这非常大但却没有超过32-bit int的表示范围,所以0x3f3f3f3f还满足了我们“无穷大加无穷大还是无穷大”的需求。
  3. 最后,0x3f3f3f3f还能给我们带来一个意想不到的额外好处:如果我们想要将某个数组清零,我们通常会使用memset(a,0,sizeof(a))这样的代码来实现(方便而高效),但是当我们想将某个数组全部赋值为无穷大时(例如解决图论问题时邻接矩阵的初始化),就不能使用memset函数而得自己写循环了(写这些不重要的代码真的很痛苦),我们知道这是因为memset是按字节操作的,它能够对数组清零是因为0的每个字节都是0,现在好了,如果我们将无穷大设为0x3f3f3f3f,那么奇迹就发生了,0x3f3f3f3f的每个字节都是0x3f!所以要把一段内存全部置为无穷大,我们只需要memset(a,0x3f,sizeof(a))。

代码:

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f

using namespace std;
typedef long long LL;

int dp[2005][2005];

int main() {
	int n, k;
	int weight[2005];
	while (cin >> n >> k) {
		memset(weight, 0, sizeof(weight));
		//因为下面我们将对dp进行选小操作,所以这里将dp往尽可能大了初始化
		memset(dp, inf, sizeof(dp));
		dp[0][0] = 0;//前i件选0组疲劳度始终是0,这里进行初始化,
		             //下面for循环中dp[i][0] = 0为相同操作

		for (int i = 1; i <= n; i++) {
			cin >> weight[i];
			dp[i][0] = 0;
		}
		sort(weight + 1, weight + n + 1);

		for (int i = 2; i <= n; i++) {
			for (int j = 1; j <= k; j++) {
				dp[i][j] = min(dp[i - 1][j], dp[i - 2][j-1] + (weight[i] - weight[i - 1]) * (weight[i] - weight[i - 1]));
			}
		}
		cout << dp[n][k] << endl;
	}
	return 0;
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值