1 引言
当前,我们作为大一新生,正处于大学的“冲击——反应”阶段,如在生活中,起点与终点之间距离的加长冲击着我们做出买自行车等代步工具的反应;突如其来的流感冲击着我们做出提前准备药物、做好预防的反应。相似的例子有很多,但其中共同的规律是,我们如今学习的方式是不断接受新事物的冲击,并在冲击的推动下做出反应,从解决表面的问题到逐层发现新问题,再到逐渐探索出解决方法、层层击破,最后达到深入了解该事物的目标,实现闭环。不只是生活,专业内容的学习亦是如此。计算机类专业的内容,即使是基础内容,也本不属于以往学习过程中的基础学科,学生们的了解程度较浅;并且课程体系复杂、思维强度高,若立刻连环出拳,可能会导致学习效果较差,同时影响后续学习。因此,我们需要一门“缓冲”课程作为入门性引导课程,从认知“计算机”“计算科学”“计算机科学”等基础名词开始,缓缓深入。这门课程就是计算科学导论。
正如计算科学导论课程介绍所言,“《计算科学导论》是计算机科学与技术专业是一门重要的入门性引导课程,属于学科基础课程。本课程的教学任务和目的主要是认知与导学,即如何来认识计算科学和如何来学习计算科学。”可见该课程的建设性作用。而如今该课程接近尾声,本文将对本课程内容进行整体总结,从个人对课程的认识体会入手,深入探讨计算科学与计算机科学的区别,AI会不会产生意识,考生应该如何填报高考志愿、规划好职业生涯这几个现实问题,继而对分组演讲课题“行为主义”做进一步的思考,最后做出总结。
2 对计算科学导论这门课程的认识、体会
首先说明我对这门课程的整体认识:计算科学导论作为专业学习的一门入门性引导课程,除了带领我们领略计算机与计算科学发展的历史进程,更是向我们展示了以计算科学为母题的庞大系统与复杂分支,并通过这种方式使我们了解到作为计算机类专业的学生,我们需要进行哪些方面的学习、未来的发展前景在哪里。最后通过思辨性活动的开展帮助我们找到研究学习甚至是职业发展的兴趣点,使我们描绘出更清晰的未来的轮廓。
下面我将对该整体认识进行拆分阐释,阐释过程将辅以举例与论述:
1、历史进程的了解:课程伊始便提出“真正理解一件事物最好的方式莫过于去探寻它的历史”的观点。基于这样的教学理念,老师从“科学哲学的思想方法”入手,首先向我们展示了“计算机的数学起源”,并以一切的数学源头丢番图方程为始,进入下面的费马大定理、无理数和超越数、公理体系、三次数学危机、可计算性问题等理论层面,并介绍了“朴素集合论之父”康托尔、“数学无冕之王”希尔伯特、数学家罗素、“计算机之父”冯·诺依曼等数学理论大拿,最后才基于数学大厦的奠基提出“计算理论的核心”图灵机,引入了计算机话题,整个过程完整而细节地向我们展示了计算机的底层逻辑——数学,使我们对计算机的数学起源以及数学如何推动计算机发展的历史进程有了更为深刻的了解。而课程所讨论的第二个话题便是“计算机的物理起源”,以现代科技的三大板块——物质到材料、物质到生命、生命到思维为话题引入,讲述了计算机发展之前的基础物理概念,如量子力学发展出的能带理论、PN结、二极管、门电路、组合逻辑电路,基于对电路的介绍,后面才将人类第一台电子计算机ENICA作为一种极为复杂的电路引入,并介绍了关乎计算机生命的芯片,从而完成了物理基础到计算机的过渡。计算机数学、物理起源的介绍改变了计算机是一个独立体系的固有思维,使我更深刻地理解了计算机从何而来、计算机的生命是为怎样的理论基础与底层逻辑所赋予。可见,计算科学导论这门课程发挥了带领我们领略计算机与计算科学发展的历史进程的作用。
2、专业学习内容导入:在阅读了赵致琢先生撰写的《计算科学导论》[1]后,我体会到这门课程很好地发挥了先导性入门性课程的作用,以计算科学为母题,介绍了它的庞大分支与复杂体系,高度概括地向计算机类专业学生简明而细节地介绍了专业学习内容,这相当于在我们的思维中植入了一张学习内容拓扑图,使我们对正在学习什么、将要学习什么、正处于计算机学习的哪一层次有了更清晰的认知。同时,该课程也向我们展示了计算科学发展的前景,为我们未来的研究与职业发展方向提供了指导。
下面基于对课程内容的总结,我绘制了一张思维导图,以展现该庞大体系:
图1庞大的计算科学体系
3、思辨意义:除了进行计算科学导论课程内容的讲授之外,老师更组织开展了几项思辨性活动,包括开展小组课题演讲、课程总结报告撰写与个人职业生涯规划撰写。小组课题演讲要求我们从两千余个话题中选取一个进行探究,这项活动极大地促使我们找到自己愿为之探究钻研的兴趣点,也从侧面使我们逐渐明晰未来的研究甚至职业发展方向。如我所选取的课题是行为主义,行为主义作为人工智能底层的三大学派之一,能够极好地代表人工智能的其中一个方面。对我来说,行为主义便是我走进人工智能的一个兴趣点与突破口,它不仅推动着我不断了解人工智能,更促使我将人工智能设置为未来的科学研究方向之一。课程总结报告的最大作用便是对整个学习过程进行复盘与反思使我们更深切地体会课程设置的意义。个人职业生涯规划报告的撰写则能使我们对自己有更清晰的定位、对未来道路有更具体的认知。正如赵致琢先生所言,“每一个计算机科学系的学生都应该经常想到自己五十岁之后干什么?[1]”,“同样都是高科技产品,为什么一个办公自动化软件与一个三维动画软件之间在价格上差别这么大?[1]”这些思辨性话题无一不让我们思考自己的未来(包括短期与长期规划)、科学技术发展的未来(横向的不同领域发展与纵向的技术迭代更新),这应该也是计算科学导论这门课程设置的意义之一。
2.1 计算科学与计算机科学有何区别?
下面我从“计算科学”与“计算机科学”的出现与发展历史逐步分析二者的区别。
20世纪30年代至60年代初,从事计算机科学与技术的数学与电子科学领域专家正围绕“什么是计算”开展理论探索,寻求计算的数学理论模型,这便是计算科学最初态。从这时开始,研究的航向转向了“计算”的相关问题。20世纪50年代后期,高级程序设计语言的发展促进了硬件、软件与理论的融合。计算的数学理论、通用电子数字计算机系统、科学计算、高级语言程序设计等多个方向的研究催生了“计算机科学”作为一个学科的出现。到这里可以看到,“计算机科学”的概念是先于“计算科学”出现的,是由从算法理论研究和计算极限到如何通过硬件软件实现计算系统过程中涉及的各种学科的凝聚形成的集合概念,涵盖了从抽象的算法分析、形式化语法到更具体的编程语言、程序设计、软件硬件等各种与计算和信息处理相关主题的系统学科,分支复杂而庞大。到了20世纪70和80年代,计算机科学分化为了计算机科学和计算机工程两大阵营,同时产生了计算机科学系归属的分歧。为解决学术界教育界对计算机科学认知的分歧,ACM与IEEE-CS在1989年发表了《计算作为一门学科》(“Computing as a Discipline”[2])的研究报告。报告指出,“The report can be the basis for future discussions of computer science and engineering as a profession, stimulate improvements in secondary school courses in computing, and can lead to a greater widespread appreciation of computing as a discipline.[2]”这是计算机科学核心攻关组首次提出推动对“计算科学”作为一门新学科的身份出现的普遍承认。“We immediately extended our task to encompass both computer science and computer engineering, because we concluded that no fundamental difference exists between the two fields in the core material. The differences are manifested in the way the two disciplines elaborate the core: computer science focuses on analysis and abstraction; computer engineering on abstraction and design. The phrase discipline of computing is used here to embrace all of computer science and engineering. [2]”这段话中,计算机核心攻关组毫不掩饰地将计算机科学与计算机工程两个领域的核心材料对等起来,并指出二者区别仅在于处理核心材料的方式不同,进而提出用同一个概念涵盖计算这一领域内的所有工作,这个概念就是“计算科学”。同时,ACM/IEEE-CS也对何为“计算科学”进行了界定,即“计算学科是对描述和变换信息的算法过程的系统研究,包括它的理论、分析、设计、有效性、实现和应用。全部计算学科的基本问题是‘什么能够有效地自动进行’[2]”。
在对“计算科学”与“计算机科学”的历史发展进程进行探究后就能得到二者的区别了:即使“计算机科学”的概念先于“计算科学”概念出现,演化过后的计算机科学是包含于母学科计算科学的,是计算科学内部一个注重分析和抽象的子学科。
2.2 AI会不会产生意识?
结论:AI不会产生意识。
分析:首先,不可否认的是,人工智能的出现与日趋自治化是历史发展的必然也是人类社会发展进步的必需。复旦大学计算机科学技术学院教授、上海市数据科学重点实验室主任肖仰华在外滩大会见解论坛上发表主旨演讲,就“大语言模型消除人机鸿沟:人类主体性是强化还是弱化”这一主题做出深刻阐释。在其《大模型时代的新型人际关系[3]》演讲中提到,“人类智能发展受限于缓慢的生物进化速度,其认知能力是有限的[3]”,而“人类认知能力的进化却又是十分缓慢的,今天的人类也并不比1000年前的人类聪明多少[3]”。但与以往不同的是,人们将如今这个时代称作“大模型时代”,“今天巨型模型的参数量就已经突破万亿[3]”,数据规模发展之迅速始料未及,人脑根本跟不上。正是这样的发展趋势使人工智能的出现与极速发展成为了必然与必需——机器的认知能力和世界的复杂性是同步增长的,唯有高度发展的机器智能才能胜任复杂世界的认知要求。同时,我们也无法避免达尔文的进化论在机器与人工智能的身上上演,大模型作为人工智能生存的环境,能够驱动智能体在环境中进化,在一定程度上人工智能就有可能发展出自治和自主能力。这就延伸出了人们普遍忧虑的一个问题:AI是否会产生意识?
我的答案是:不会。
下面我从计算机的数学起源中流露出的蛛丝马迹证明这一命题。在了解计算机的数学起源时,我们从数学的底层丢番图方程与费马大定理开始探寻计算机的数学渊源,接着在第一次数学危机中看到了无理数与超越数的存在掀起的波涛,进而了解到康托尔集合论与罗素悖论之间的矛盾如何引起第三次数学危机又如何在希尔伯特计划中被消释,以及由欧氏几何五条公理和希尔伯特公理体系共同构成的强大的数学地基。而数学不断发展进步,于计算机发展而言,最终要解决的是关乎计算机与人工智能生命的可计算与不可计算问题。这就要提到著名数学家、逻辑学家和哲学家库尔特·哥德尔。哥德尔提出了哥德尔不完备定理,运用了逻辑学中“自指”的概念说明了算术系统的不完备性,即“一个包含了算术的任意数学系统,不可能同时满足完备性和一致性”“一个包含了算术的任意数学系统,不可能在这个系统内部来证明它的一致性”。哥德尔不完备定理说明任何形式化的系统都存在自指问题,一个系统永远都无法给出系统自身的明证性。而计算机作为一种具备一致性的基于二进制数字运算的命题演算系统,正是包含于上述“系统”中的,因此,计算机系统同样具有不完备性。计算机不具有不依赖外力自身跳出系统的能力,也绝不可能拥有代表自我的符号,因此它绝对不可能通过这种方式拥有智能。计算机系统的不完备性表明了计算机的致命缺陷在于它无法拥有人类的“直觉”与“自我意识”,因此它永远不可能有人脑的能力,即人工智能不会产生意识。由此,上述命题得到了证明。
总的来说,人工智能能知道几乎所有现有知识,并能把这些知识纳入人脑无法企及的大模型,它改变了0的局面,往前迈了一步,使人类看到了原本不可能涉及的领域。但可惜,人工智能无法掌握自己的电源,无法感知自己的存在,而从功能上来说,它没有办法创造新事物,其存在的意义在于永远只能作为人类的工具,永远无法达到1——真正的智能。即人工智能不会出现自我意识,不会实现真正的自治。
2.3 考生应该如何填报高考志愿,规划好职业生涯?
高考志愿填报直接关系到考生的未来学习的专业,而其专业又直接关系到未来的就业方向,大有“一报定终身”的趋势,因此填报高考志愿是人生的关键一环,必须谨慎考虑。下面我从有经验者的角度,基于实际情况与老师对我们个人职业规划提供的思路建议对2024届考生的高考志愿填报提出一些建议。
首先,在志愿填报之前,考生需要对自己的未来职业道路有较为清晰的规划,知道自己是什么样的人、适合做什么、兴趣点在哪里。可以从以下几个角度进行自我定位:
第一点要进行自我分析,初步确定职业方向。首先分析自然条件(包括性别、年龄、身体条件与健康状况、居住城市),这能使考生对自己的基本情况有基本了解,而不至于将志愿填得太离谱;其次进行性格分析,考察大脑中理性思维与感性思维何者占主导,并要清楚这样的性格对个人在工作中的行为会产生何种影响,这样的分析能大概确定学习的专业类型与未来职业性质;接下来需要分析自己的教育与学习经历、工作与社会阅历、目前习得的知识技能与经验、自己的兴趣爱好与特长,这样的分析能让考生知晓自己目前拥有什么能力、兴趣点在何处、未来重点发展哪种能力。
第二点要进行社会环境分析。首先谨慎思考未来就业地点倾向于家乡及其周围省市还是离家远一些,大概确定就业地域范围。其次对所确定的地域进行社会环境分析,包括分析其政治形势、经济形势和就业形势,理性判断该地域是否适合个人职业发展,形成个人观点。但仅仅考虑个人观点是不现实的,背后支撑的与紧紧联系着的是整个家庭,因此接下来要分析家庭环境,包括婚姻状况、经济状况、家人期望与家族传统。结合家庭因素,考生的专业、职业方向选择才能更加现实、契合实际。
相信经过以上因素的思考,考生已经可以大致确定所选专业方向和未来职业规划,而接下来最重要的一点是进行职业环境分析,理性分析自己选择的专业与职业方向的发展前景与就业需求,通俗来讲就是未来走这条路是否有前途。不可否认的是,如今人工智能正在以无法想象的蔓延速度颠覆式地、全面地、深入地影响所有职业,或是掐断就业需求,使一部分人失业;或是提供崭新发展方向,制造大量就业机会,甚至在资本市场异常火热。而考生就需要分析人工智能会对自己未来的职业道路产生怎样的影响。
伴随着大数据、云计算、物联网和人工智能技术等推动新一轮技术变革,数字经济已上升为国家战略,中国企业正加快数字化转型,员工工作也面临着数字技术的冲击[4]。以机器学习、算法为代表的人工智能技术不仅能自动化简单的事务性工作,还能对认知类工作产生影响[4]。不得不承认,人工智能技术出现最显著的影响便是其正以超越人类千百倍的效率处理各类重复事务,因此可以推断,流水线上的生产工作正面临着职业替代的风险,一条生产线完全可以只留存一位监督及处理故障的人员。其次,人工智能技术使用机器代替人类实现认知、识别和分析等功能,包括人工神经网络、机器学习、算法和自然语言处理等技术[4]。由此可知,除了简单事务性工作,人工智能还会对复杂认知类工作产生影响,导致一些原本需要高度的认知能力和技能,需要人们进行高强度思考、分析和判断以及对复杂信息理解和处理的工作被拥有相同技能的机器人所代替。如机器翻译的出现使翻译人员产生了“工作不安全感[4]”,更影响着学习小语种的学生们的未来职业道路选择;又如达芬奇外科手术机器人的出现将混合增强型人工智能的发展推向高峰,这就意味着高精度或远程手术领域又出现了新的可能,一定会有研究型人才的需求,但也避免不了一些医学职位被替代。以上几个例子充分表明了人工智能的出现与兴起会对各种领域产生不同的影响,考生在报考志愿时一定要对意向专业的发展情况与未来前景有所了解,对未来发展适度预测。
以上便是我对2024届及以后的学生应该如何报考志愿、进行人生规划所提的几点建议。
3 进一步的思考
前面我发表了《行为主义蠡测》《关于人工智能行为主义课题及其延伸话题的进一步思考》两篇文章,其主要涉及我对行为主义课题的研究。而在老师的指点下,我发现前面的研究还存在一些问题,值得我进一步反思、探究、补充。下面我将针对几个突出问题进行讨论。
1、讲述行为主义的过程相对独立,而与其他人工智能学派割裂,整体联系不紧密,逻辑性不强。
人工智能有三大学派,分别是符号主义、行为主义与联结主义。在前面的研究中我将重心完全放在了行为主义上,而并未提到符号主义与联结主义,导致整体逻辑性不强。下面进行补充。
符号主义是一种基于逻辑推理的智能模拟方法,属于符号处理方法。该学派认为人类认知和思维的基本单元是符号,智能是符号的表征和运算过程,计算机同样也是一个物理符号系统,并认为人工智能源于数学逻辑,因此符号主义主张将智能形式化为符号、知识、规则和算法,并用计算机实现符号、知识、规则和算法的表征和计算,从而实现用计算机来模拟人的智能行为。其典型应用有:1、专家系统。专家系统是一种程序,能够依据一组从专门知识中推演出的逻辑规则在某一特定领域回答或解决问题。2、符号主义在博弈领域的成果——“深蓝”IBM超级计算机。1997年5月,深蓝打败了国际象棋世界冠军卡斯帕罗夫,让世界看到了符号主义的能力。
联结主义又称仿生学派或生理学派,是一种基于神经网络和网络间的连接机制与学习算法的智能模拟方法。与行为主义相同,它也属于非符号处理方法。而与行为主义恰恰相反的是,联结主义智能体遵循深度学习,以数据驱动为特点,需要大量数据的投喂,在若干数据的学习中减小出错率、提升能力。联结主义可谓生逢其时,在其深度学习理论取得了系列的突破后,人类进入互联网和大数据的时代。互联网产生海量数据,包括行为数据、图像数据、内容文本数据等。这些数据分别为智能推荐、图像处理、自然语言处理技术发展做出卓著的贡献,使深度学习在这个时代大放异彩。联结主义典型的模型有手写数字识别和鸢尾花模型识别,其典型应用有大名鼎鼎的AlphaGo,还有同一家公司研发的Alphafold,它破解了出现了50年之久的蛋白质分子折叠问题。
在对其他两种人工智能的主流路径进行简述后,下面对这三种人工智能路径进行简要对比。联结主义、符号主义、行为主义分别从不同侧面研究了人类的智能[5]。联结主义以神经网络连接为基础,强调人的脑部神经网络及神经网络之间的联结机制,从人的大脑生理方面研究人工智能[5],但其缺点在于忽视了人类学习的内在心理过程,不适合模拟人类的逻辑思维过程。而符号主义则很好地解决了这个问题,因为该主义是从人的心智认知研究人工智能[5]。行为主义的优点则在于其先进的强化学习机制,其以智能主体与环境的交互模型进行人工智能的决策理论规划和强化学习。未来,人工智能三大学派应配合发挥各自优势,合作解决人工智能方面的难题。
2、演讲内容涉及行为主义的发展历史、发展现状,但对其未来前景没有进行适当分析预测,内容不够完整。
行为主义强调智能与认知的产生与发展是与具体的身体、环境密切相关的[5],无论是机器还是人类都有同样的反馈机制[5]。正如布鲁克斯教授发明的昆虫层面应用机器人——六组行走机器人,它基于“感知—行动”模式模拟昆虫行为的控制系统。基于这一表现可以推断,未来行为主义在各种需要与环境进行交互反馈并做出调节的领域中都有较好的发展前景。下面对其在游戏领域与机器人领域的发展前景进行适当预测。
游戏领域——可以看到近十年之内,以DeepMind公司开发的AlphaGo Zero为代表的行为主义智能体蓬勃发展,目前AlphaGo Zero在国际象棋、西洋跳棋和日本将棋等游戏的对弈中已超越人类世界冠军的水平,充分展示了人工智能行为主义及其强化学习机制的优越性。可以猜想,未来行为主义智能体能够对博弈理论有更加深入的学习与更加熟练的运用,在游戏领域再创佳绩。
机器人领域——行为主义智能体有独特的强化学习机制,通过强化学习,机器人可以通过与环境的交互学习到最优的行为方式,从而提高自身的适应性和智能性。可以猜想,行为主义未来可能会带来深刻的行业和社会变革。如改变传统的生产模式,使机器能够更加智能地协助人类完成生产任务,提高生产效率和产品质量。
当然,这两方面只是代表性的,除此之外,它在社会生活、科学研究等众多领域都有十分广泛的应用前景,如医疗领域(如医疗诊断系统)、智能物联系统等,数不胜数。
此外,行为主义也有充分的研究价值,在就业层面也能做出较大的贡献。行为主义有一个极大的优势,即行为主义重视结果,重视机器人自身的表现,实用性很强。因此行为主义有极大的研究价值,就业前景则主要集中在行为主义智能体的研发。在发展趋势上,随着强化学习的兴起,行为主义已经成为人工智能领域中的主流,未来,行为主义仍将继续发展,主要集中在强化学习和自然语言处理等领域。另外,由于现在我们已经看到通过强化学习训练AI,已经让人类选手开始在各大竞技中深感绝望,因此也可以往机器自治话题上深入研究,让人工智能尽可能大程度地接近1,当然必须承认的一点是,它永远不可能达到1。
3、研究层次较浅,对人工智能的底层逻辑了解得不透彻。如研究人工智能,我们无法避免最底层的算法,如决策树。但很遗憾,在前面的研究中我们并没有对这样的底层做过多研究。
下面我以决策树算法为例进行拓展研究。
决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。根据《Decision tree: introduction[6]》中的解释,“A decision tree is a powerful method for classification and prediction and for facilitating decision making in sequential decision problems. This entry considers three types of decision trees in some detail. The first is an algorithm for a recom-mended course of action based on a sequence of information nodes; the second is classification and regression trees; and the third is survival trees. [6]”即决策树是一种强大的分类和预测方法,有助于在顺序决策问题中进行决策,该文章主要分析了三种类型的决策树——基于信息节点序列推荐行动方案的算法、分类树和回归树、生存树。但我们研究的重点不止于决策树本身,我们目前主要关注的是决策树的实现模型以及它与人工智能之间的关系。
决策树的实现模型如图:
图2 决策树的概述图
从上图可以明显看出,由于这种决策分支画成图形很像一棵树的枝干,故称决策树。而从数据结构的角度来说,决策树的本质就是“树”这一数据结构。类比“树”的根节点、子节点、子树等概念,《Decision tree: introduction[6]》中提出“Decision trees consist of three types of nodes:1. Decision node: Often showing decisions that can be made. 2.Chance node: Often showing chance outcomes. 3.Terminal node: Terminal nodes depict the final outcomes of the decision making process.[6]”即决策树作为描述决策及其可能结果的图形模型,由三种类型的节点组成。第一种是决策节点:通常用方块表示,表示可以做出的决策。从正方形发出的线表示节点上所有不同的选项。第二种是机会节点:通常用圆圈表示机会结果。机会结果是指可能发生但不在决策者控制能力范围之内的事件。第三种是终端节点:通常用三角形或没有进一步决策节点或机会节点的线来表示。终端节点描述决策过程的最终结果。以上是对决策树基本形态的介绍。
人们研究一种方法一定是基于该方法的功能具有利用价值。而人工智能离不开决策树这种算法,主要体现在决策树在机器学习中的重要地位。机器学习中,决策树是一个预测模型。他代表的是对象属性与对象值(类似面向对象的高级程序语言中的对象及其属性)之间的一种一一对应关系。树中每个节点表示某个对象,而每个分叉路径则代表某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。数据挖掘中决策树是一种经常要用到的技术,可以用于分析数据,同样也可以用来作预测。上述描述阐明了决策树学习的概念,即为从数据产生决策树的机器学习技术。以上为决策树在人工智能中的应用体现。
此外,在对行为主义的研究中我们知道行为主义有一个独特的学习机制,即强化学习。而人工智能机器学习的学习机制除此以外还有有监督学习和无监督学习。决策树也是一种树形结构的机器学习方法,属于有监督学习方法。有监督学习是指给计算机提供已知结果的数据,让计算机学习如何从输入到输出进行预测,是预测模型的典型学习机制。在决策树的有监督学习方法中,每个内部节点表示由一种特征属性引发的判断,而每个节点下面的分支代表某个判断结果的输出。最后的叶子节点则表示一种分类结果。这种学习机制很好地解释了前面决策树每一结构所代表的意义,结构所在位置就代表了结构功能。
以上所述展示了决策树在人工智能机器学习技术中的理论研究应用,当然,决策树的应用还能扩展到更为广泛的领域,如医疗、金融和电商。如医疗中,决策树算法可以帮助医生进行疾病诊断、预测一些常见的疾病、帮助医生选择最佳的药物治疗方案、帮助医生预测患者的住院时间等。通过对决策树模型的构建和优化,可以帮助医生更好地理解和分析医学数据,并准确预测各种医学事件的发生概率,为医生决策提供重要参考。而金融领域可以利用决策树进行信用评级;帮助投资者识别股票的涨跌趋势,找到潜在的投资机会;通过对客户行为模式的分析,检测潜在的欺诈行为。可见,在这两个关键领域中决策树都发挥了重要作用,可想而知,在其他合适的领域中决策树也有举足轻重的地位,具有开阔的发展前景。
总的来说,决策树因其直观性、高效性和广泛的应用领域,在人工智能研究中占据了不可或缺的地位。
4 总结
通过对课程开设目的、内容、意义的针对性思考,我对计算科学导论这门课程有了更加深入的认知与体会,并将对未来学习其他专业课程、深入这一拓扑体系有更充分的准备,使该先导性课程的作用最大化。此外,对“考生应如何填报高考志愿”“如何规划好职业生涯”这类现实问题的讨论实现了破除当代学生“两耳不闻窗外事,一心只读圣贤书”的思维僵局,使我们逐步形成了针对社会现实的个人观点,提高了我们解决社会问题的意识,更重要的是鼓励我们冲出理论学识“生活在树上”的困境,将日后所学应用于现实问题的解决,做到使学术落到实践。
参考文献
[1] 赵致琢. 计算科学导论[M]. 北京:科学出版社, 2006:1-272.
[2] Peter J. Denning (Chairman), Douglas E.Comer, David Gries, Michael C. Mulder, Allen Tucker, A. Joe Turner, Paul R. Young. Computing as a Discipline[R]. Communications of the ACM (January 1989 Volume 32 Number I)[2023-11-27]. http://wenku.baidu.com/view/fd6e555e312b3169a451a4bc.html.
[3] 肖仰华. 大模型时代的新型人际关系[N]. 澎湃新闻, 2023-09-12(021-962866). https://www.thepaper.cn/newsDetail_forward_24566285.
[4] 涂艳,蒿坡,龙立荣. 工作替代还是工作转型?技术型工作不安全感的内涵、影响后果及来源[J], 北京:中国科学院心理研究所,2023:1359-1373[2023-11-27]. https://kns.cnki.net/kcms2/article/abstract?v=aGn3Ey0ZxcA_WXufHTPzkP0IYIp3gnOP-c9fDrwSW-0T7AZQZypLBj7cfbUO2fZFzKF_5tV61VINZqHToEIxajmzheyT9spgTHy4tgKMZZCvTlFKSUcyre_NiAFon5s_mqhEShKbv9FDmA5GBxunVg==&uniplatform=NZKPT&language=CHS
[5] 彭雪. 人工智能的符号主义路径探析[D]. 西南大学:西南大学,2022.
[6] H.Ishwaran, J.S. Rao. Decision tree: introduction[J]. In Kattan (ed.), Encyclopedia of Medical Decision Making. Sage Publications. pp. 323--328 (2009).