有理数取余

Description

给出一个有理数 c=abc=ba​,求 c mod 19260817cmod19260817 的值。

这个值被定义为 bx≡a(mod19260817)bx≡a(mod19260817) 的解。

Input

一共两行。

第一行,一个整数 aa。
第二行,一个整数 bb。

Output

一个整数,代表求余后的结果。如果无解,输出 Angry!

Sample 1

InputcopyOutputcopy
233
666
18595654

Hint

对于所有数据,保证 0≤a≤10100010≤a≤1010001,1≤b≤10100011≤b≤1010001,且 a,ba,b 不同时是 1926081719260817 的倍数。

代码

// 使用扩展欧几里得算法求解分数取模问题
#include<iostream>

using namespace std;

const int mod = 19260817; // 定义模数

typedef long long LL;

LL a, b; // 存储输入的两个大数取模后的值

// 读取大数字符串并转换为模mod后的值
LL getint() {
    string aa;
    cin >> aa;
    LL ans = 0;
    for (int i = 0; i < aa.size(); i++) {
        LL t = aa[i] - '0'; // 获取当前位的数字值
        ans = (ans * 10 + t) % mod; // 逐位计算并取模,防止溢出
    }
    return ans;
}

// 扩展欧几里得算法:求解ax + by = gcd(a,b) 并返回gcd,解存在x,y中
int exgcd(int a, int b, LL& x, LL& y) {
    if (!b) {
        x = 1, y = 0; // 递归基:当b=0时,x=1,y=0满足a*1 + 0*y = a
        return a;
    }
    // 递归调用,交换x和y的位置以简化计算
    int d = exgcd(b, a % b, y, x);
    y -= a / b * x; // 根据递归结果更新y的值
    return d; // 返回最大公约数
}

int main() {
    a = getint(); // 读取a并取模
    b = getint(); // 读取b并取模
    
    LL x, y;
    int d = exgcd(b, mod, x, y); // 求b和mod的最大公约数d,并找到bx + mod*y = d的解x
    
    // 方程有解的条件:d必须能整除a
    if (a % d) {
        puts("Angry!"); // 无解时输出
        return 0;
    }
    
    // 调整解:原方程为bx ≡ a (mod mod),解为x = x0 * (a/d)
    x *= a / d;
    
    // 计算解的周期:mod/d,将解调整到最小正整数
    int t = mod / d;
    cout << (x % t + t) % t; // 保证结果非负
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值