Description
给出一个有理数 c=abc=ba,求 c mod 19260817cmod19260817 的值。
这个值被定义为 bx≡a(mod19260817)bx≡a(mod19260817) 的解。
Input
一共两行。
第一行,一个整数 aa。
第二行,一个整数 bb。
Output
一个整数,代表求余后的结果。如果无解,输出 Angry!
。
Sample 1
Inputcopy | Outputcopy |
---|---|
233 666 | 18595654 |
Hint
对于所有数据,保证 0≤a≤10100010≤a≤1010001,1≤b≤10100011≤b≤1010001,且 a,ba,b 不同时是 1926081719260817 的倍数。
代码
// 使用扩展欧几里得算法求解分数取模问题
#include<iostream>
using namespace std;
const int mod = 19260817; // 定义模数
typedef long long LL;
LL a, b; // 存储输入的两个大数取模后的值
// 读取大数字符串并转换为模mod后的值
LL getint() {
string aa;
cin >> aa;
LL ans = 0;
for (int i = 0; i < aa.size(); i++) {
LL t = aa[i] - '0'; // 获取当前位的数字值
ans = (ans * 10 + t) % mod; // 逐位计算并取模,防止溢出
}
return ans;
}
// 扩展欧几里得算法:求解ax + by = gcd(a,b) 并返回gcd,解存在x,y中
int exgcd(int a, int b, LL& x, LL& y) {
if (!b) {
x = 1, y = 0; // 递归基:当b=0时,x=1,y=0满足a*1 + 0*y = a
return a;
}
// 递归调用,交换x和y的位置以简化计算
int d = exgcd(b, a % b, y, x);
y -= a / b * x; // 根据递归结果更新y的值
return d; // 返回最大公约数
}
int main() {
a = getint(); // 读取a并取模
b = getint(); // 读取b并取模
LL x, y;
int d = exgcd(b, mod, x, y); // 求b和mod的最大公约数d,并找到bx + mod*y = d的解x
// 方程有解的条件:d必须能整除a
if (a % d) {
puts("Angry!"); // 无解时输出
return 0;
}
// 调整解:原方程为bx ≡ a (mod mod),解为x = x0 * (a/d)
x *= a / d;
// 计算解的周期:mod/d,将解调整到最小正整数
int t = mod / d;
cout << (x % t + t) % t; // 保证结果非负
return 0;
}