中级微观经济学笔记
有的图片上传不了emmm…
考前写的一点笔记,平时中微一点没学…想着删了有点可惜,于是传上来,随便看看就好。
预算约束
- 从价税:
5%的从价税使商品加价到1.05*p
预算约束线变为: p 1 x 1 + p 2 x 2 = m ( 1 + t ) p_1x_1+p_2x_2=\frac{m}{(1+t)} p1x1+p2x2=(1+t)m
预算约束线直接向内平移 - 当价格为常数时,预算约束线都为直线,且斜率为
−
p
1
p
2
\frac{-p_1}{p_2}
p2−p1
商品1放在横轴上
除了收入m的约束也存在其他约束,多种约束同时满足,即为消费者的选择集
偏好
- 严格偏好SP,弱偏好WP,无差异
完备性,反身性,传递性 - 无差异曲线的特殊情况
- 完全替代:斜率为替代比率(看看谁替谁)
- 完全互补:折线
- 良态偏好
单调且凸的,越多越好,没有餍足点,消费束组合比他本身更受偏好 - 边际替代率MRS
- 两种商品都为正常商品的MRS<0
- 有一个为言物品的MRS>0
效用
- 商品 x 1 和 x 2 到 u ( x 1 , x 2 ) x_1\text{和}x_2\text{到}u(x_1,x_2) x1和x2到u(x1,x2)的映射
- 边际效用:求偏导
U ( x 1 , x 2 ) = x 1 x 2 , M R S = − x 2 x 1 U(x_1,x_2)=x_1x_2,MRS=\frac{-x_2}{x_1} U(x1,x2)=x1x2,MRS=x1−x2 - 拟线性效用函数的边际替代率
只和一种商品的数量有关,只是一维的,“线性的” - 如果效用函数严格单增,单调变换不影响MRS
选择
- 柯布-道格拉斯函数
U ( x 1 , x 2 ) = ( x 1 ) a ( x 2 ) b , M S R = − a x 2 b x 1 U(x_1,x_2)=(x_1)^a(x_2)^b,MSR=\frac{-ax_2}{bx_1} U(x1,x2)=(x1)a(x2)b,MSR=bx1−ax2
如果引入预算约束线(线性)
( x 1 , x 2 ) = ( a m ( a + b ) p 1 , b m ( a + b ) p 2 ) (x_1,x_2)=(\frac{am}{(a+b)p_1},\frac{bm}{(a+b)p_2}) (x1,x2)=((a+b)p1am,(a+b)p2bm)
需求
-
需求函数上的每一点都是效用最大化的一个点,所以当p2和y保持不变时,p1改变时包含所有效用最大化的消费束曲线称为价格p1的提供曲线,画出来的时一般需求曲线
-
柯布-…画出来的需求曲线
x 1 ( p 1 , p 2 ˉ , y ˉ = a a + b ∗ y p 1 ) x_1(p_1,\bar{p_2},\bar{y}=\frac{a}{a+b}*\frac{y}{p_1}) x1(p1,p2ˉ,yˉ=a+ba∗p1y)
这个曲线既是x1的需求曲线也是x2的价格提供曲线
且价格提供曲线是水平的
-
完全互补的效用函数
价格提供曲线(又是需求曲线)
x 1 = x 2 = y p 1 + p 2 x_1=x_2=\frac{y}{p_1+p_2} x1=x2=p1+p2y -
完全替代
U ( x 1 , x 2 ) = x 1 + x 2 U(x_1,x_2)=x_1+x_2 U(x1,x2)=x1+x2
x 1 ( p 1 , p 2 , y ) = 0 ( i f p 1 > p 2 ) e l s e : y p 1 x_1(p_1,p_2,y)=0 (if p_1>p2) else: \frac{y}{p_1} x1(p1,p2,y)=0(ifp1>p2)else:p1y
-
求出反函数即为反需求函数
-
收入改变时的数量需求称为恩格尔曲线,收入y与x的函数关系
把上面的y当变量就好 -
同位偏好
-
收入效应
- 正常商品一种商品的需求量随收入上升而增加,则为正常商品,正常商品的恩格尔曲线为正
- 劣等品反之
劣等品的会向上弯曲 - 一般商品:价格上升需求下降
- 吉芬商品
-
交叉价格的影响
假如p2上升,商品1的需求增加,则商品1,2互为替代品
反之,商品1需求也减少,则商品1,2为互补品
总之:对 x 2 x_2 x2求 p 1 p_1 p1的偏导,判断正负即可
显示偏好
通过消费者的选择,来发现消费者的偏好
消费者是理性的,偏好在短时间内不会改变
-
直接显示偏好
假设消费束y也是可行的,但是消费者却选择了消费束x,则消费束x直接显示偏好于y(反正就是选x)
符号: -
间接显示偏好
x直接显示偏好于y,y直接显示偏好于z,则x间接显示偏好于z
-
显示偏好弱公理
就是没有反身性的意思,上式若成立,消费者不理性,不研究了
检验:求和+画圈
-
显示偏好强公理
还是没有反身性
总之,就是像在检验判断矩阵是否满足一致性 -
指数
-
数量指数
I q = p 1 x 1 t + p 2 x 2 t p 1 x 1 b + p 2 x 2 b I_q=\frac{p_1x_1^t+p_2x_2^t}{p_1x_1^b+p_2x_2^b} Iq=p1x1b+p2x2bp1x1t+p2x2t
t为当期,b为基期
- 当价格取基期,得拉式指数 L q L_q Lq
- 价格取当期,得帕式指数
拉式小于1;帕式大于1,其他情况不能比较 -
价格指数
拉式:
帕式:
都是现期做分子,基期做分母
跟M做比较,拉式还是小于M
斯勒茨基方程
- 替代效应:
一种商品涨价了就买别的 - 收入效应:
收入多了就多买正常商品,少买劣等商品 - 斯勒茨基分解
购买与销售
- 禀赋
w
w
w:初始时消费者所拥有的资源
记法:
禀赋点总是在预算约束上
- 净需求
与禀赋点相比较
净需求=0
省去了效用函数 - 劳动力够给
- 禀赋收入效应
鉴于之前对斯勒茨基分解没有考虑到价格变化对禀赋收入水平的变化,所以现在考虑一下。
跨时期选择
看不完了,先摆了
博弈论
-
占优策略
-
同步博弈
-
序贯博弈
先行动的为领导者,后行动的为追随者 -
纯策略纳什均衡
用划线法后发现一个选择下面有两条线,那么就存在纯策略纳什均衡 -
混合策略纳什均衡
一个博弈可能不存在纯策略纳什均衡,但一定存在混合策略的纳什均衡
假设A有U和D两种策略,采取U策略的概率为p,采取D的概率为1-p,然后根据收益矩阵分别计算A选择U和V的预期收益
当两收益相同时(A,B分别计算) ,存在唯一的纳什均衡
最后算一个总收益(A纳什均衡的预期收益)
-
重复博弈
参与者对某一策略是否敏感取决于该博弈次数是否是有限的or无限的。
囚徒困境
可能出现其他的纳什均衡
08636614)]
6. 重复博弈
参与者对某一策略是否敏感取决于该博弈次数是否是有限的or无限的。
囚徒困境
[外链图片转存中…(img-yBiVt5Cy-1720508636614)]
[外链图片转存中…(img-1Aa9peRr-1720508636614)]
可能出现其他的纳什均衡