T1 三角形面积

T1 三角形面积

题目背景

请尽量在 20min 之内写完题目。这是指「写代码」的时间;「读题」时间不计算在内。

题目描述

给定平面直角坐标系上的三个整点 A , B , C A, B, C A,B,C 的坐标,求其围成的三角形面积。

数据保证答案一定是整数。所以如果你采用了浮点数来计算,请四舍五入到整数


两点之间的距离公式: ( x 1 , y 1 ) , ( x 2 , y 2 ) (x_1, y_1), (x_2, y_2) (x1,y1),(x2,y2) 之间的距离是 ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} (x1x2)2+(y1y2)2

海伦公式: 若三角形的边长为 a , b , c a, b, c a,b,c,则三角形的面积是 s ( s − a ) ( s − b ) ( s − c ) \sqrt{s(s-a)(s-b)(s-c)} s(sa)(sb)(sc) ,其中 s = 1 2 ( a + b + c ) s=\frac12(a+b+c) s=21(a+b+c).

输入格式

共三行,每行表示一个三角形上的点。
每行包含两个正整数,表示点的坐标,形式为 x y

输出格式

共一行,一个整数,表示三角形面积。

样例 #1

样例输入 #1

10 20
30 40
50 50

样例输出 #1

100

提示说明

样例解释

可以通过海伦公式计算面积。方法如下。

A B AB AB 距离: ( 30 − 10 ) 2 + ( 40 − 20 ) 2 ≈ 28.284 \sqrt{(30 - 10)^2 + (40 -20)^2} \approx 28.284 (3010)2+(4020)2 28.284
B C BC BC 距离: ( 50 − 30 ) 2 + ( 50 − 40 ) 2 ≈ 22.361 \sqrt{(50-30)^2 + (50-40)^2} \approx 22.361 (5030)2+(5040)2 22.361
A C AC AC 距离: ( 50 − 10 ) 2 + ( 50 − 20 ) 2 ≈ 50 \sqrt{(50-10)^2+(50-20)^2}\approx 50 (5010)2+(5020)2 50

应用海伦公式, s ≈ ( 28.284 + 22.361 + 50 ) / 2 ≈ 50.323 s \approx (28.284 + 22.361 + 50) / 2 \approx 50.323 s(28.284+22.361+50)/250.323
求出近似面积: s ( s − a ) ( s − b ) ( s − c ) ≈ 10016.80 ≈ 100.08 \sqrt{s(s-a)(s-b)(s-c)} \approx \sqrt{10016.80} \approx 100.08 s(sa)(sb)(sc) 10016.80 100.08,故答案为 100 100 100

数据规模与约定

对于 100 % 100\% 100% 的数据:每个点的 x , y x, y x,y 坐标值一定在 [ 1 , 200 ] [1, 200] [1,200] 之内,均为整数;答案一定为正整数。

代码内容

// #include <iostream>
// #include <algorithm>
// #include <cstring>
// #include <sstream>//整型转字符串
// #include <stack>//栈
// #include <deque>//堆/优先队列
// #include <queue>//队列
// #include <map>//映射
// #include <unordered_map>//哈希表
// #include <vector>//容器,存数组的数,表数组的长度
#include <bits/stdc++.h>
using namespace std;

typedef long long ll;

int main()
{
    double x1,x2,x3,y1,y2,y3;
    cin>>x1>>y1>>x2>>y2>>x3>>y3;

    double a=sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
    double b=sqrt((x1-x3)*(x1-x3)+(y1-y3)*(y1-y3));
    double c=sqrt((x2-x3)*(x2-x3)+(y2-y3)*(y2-y3));

    double p=(a+b+c)/2;
    double s=sqrt(p*(p-a)*(p-b)*(p-c));

    cout<<round(s)<<endl;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Pretty Boy Fox

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值